Lower Bounds on the State Complexity of Geometric Goppa Codes
暂无分享,去创建一个
[1] Victor K.-W. Wei,et al. Generalized Hamming weights for linear codes , 1991, IEEE Trans. Inf. Theory.
[2] G. David Forney,et al. Dimension/length profiles and trellis complexity of linear block codes , 1994, IEEE Trans. Inf. Theory.
[3] G. Norton,et al. Bounds on the state complexity of geometric Goppa codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[4] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[5] Angela I. Barbero,et al. The Weight Hierarchy of Hermitian Codes , 2000, SIAM J. Discret. Math..
[6] P. Vijay Kumar,et al. On the weight hierarchy of geometric Goppa codes , 1994, IEEE Trans. Inf. Theory.
[7] Carlos Munuera,et al. On the generalized Hamming weights of geometric-Goppa codes , 1994, IEEE Trans. Inf. Theory.
[8] G. Norton,et al. On Trellis Structures for Reed-Muller Codes , 2000 .
[9] Graham H. Norton,et al. Determining When the Absolute State Complexity of a Hermitian Code Achieves Its DLP Bound , 2001, SIAM J. Discret. Math..
[10] Michael A. Tsfasman,et al. Geometric approach to higher weights , 1995, IEEE Trans. Inf. Theory.
[11] Gr Ruud Pellikaan,et al. On special divisors and the two variable zeta function of algebraic curves over finite fields , 1996 .