Sequestration of CaMKII in dendritic spines in silico

[1]  M. Zaccolo,et al.  The Role of Type 4 Phosphodiesterases in Generating Microdomains of cAMP: Large Scale Stochastic Simulations , 2010, PloS one.

[2]  Roger Brent,et al.  Detailed Simulations of Cell Biology with Smoldyn 2.1 , 2010, PLoS Comput. Biol..

[3]  S. Andrews Accurate particle-based simulation of adsorption, desorption and partial transmission , 2009, Physical biology.

[4]  M. DePristo,et al.  Introducing simulated cellular architecture to the quantitative analysis of fluorescent microscopy. , 2009, Progress in biophysics and molecular biology.

[5]  I. Novak,et al.  Diffusion in cytoplasm: effects of excluded volume due to internal membranes and cytoskeletal structures. , 2009, Biophysical journal.

[6]  Yoshihisa Kubota,et al.  Dissecting cooperative calmodulin binding to CaM kinase II: a detailed stochastic model , 2009, Journal of Computational Neuroscience.

[7]  M Neal Waxham,et al.  βCaMKII Regulates Actin Assembly and Structure* , 2009, Journal of Biological Chemistry.

[8]  M. Neal Waxham,et al.  βCaMKII Regulates Actin Assembly and Structure , 2009 .

[9]  K. Török,et al.  A two-state model for Ca2+/CaM-dependent protein kinase II (alphaCaMKII) in response to persistent Ca2+ stimulation in hippocampal neurons. , 2008, Cell calcium.

[10]  V. Lučić,et al.  Detailed state model of CaMKII activation and autophosphorylation , 2008, European Biophysics Journal.

[11]  Caroline C. Friedel,et al.  FERN – a Java framework for stochastic simulation and evaluation of reaction networks , 2008, BMC Bioinformatics.

[12]  Pierre Boulanger,et al.  Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. , 2008, Biophysical journal.

[13]  John E. Lisman,et al.  The sequence of events that underlie quantal transmission at central glutamatergic synapses , 2007, Nature Reviews Neuroscience.

[14]  C. Hoogenraad,et al.  The postsynaptic architecture of excitatory synapses: a more quantitative view. , 2007, Annual review of biochemistry.

[15]  Yasunori Hayashi,et al.  The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure , 2007, Proceedings of the National Academy of Sciences.

[16]  Shigeo Okabe,et al.  Molecular anatomy of the postsynaptic density , 2007, Molecular and Cellular Neuroscience.

[17]  Paul De Koninck,et al.  Dendritic spine viscoelasticity and soft-glassy nature: balancing dynamic remodeling with structural stability. , 2007, Biophysical journal.

[18]  E. Schutter,et al.  Anomalous Diffusion in Purkinje Cell Dendrites Caused by Spines , 2006, Neuron.

[19]  Florian Müller,et al.  Analysis of binding at a single spatially localized cluster of binding sites by fluorescence recovery after photobleaching. , 2006, Biophysical journal.

[20]  Shigeo Okabe,et al.  Differential Control of Postsynaptic Density Scaffolds via Actin-Dependent and -Independent Mechanisms , 2006, The Journal of Neuroscience.

[21]  Irving R Epstein,et al.  Role of the Neurogranin Concentrated in Spines in the Induction of Long-Term Potentiation , 2006, The Journal of Neuroscience.

[22]  J. Lippincott-Schwartz,et al.  Monitoring chaperone engagement of substrates in the endoplasmic reticulum of live cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Ann Marie Craig,et al.  Postsynaptic protein mobility in dendritic spines: Long-term regulation by synaptic NMDA receptor activation , 2006, Molecular and Cellular Neuroscience.

[24]  Paul De Koninck,et al.  Transition from Reversible to Persistent Binding of CaMKII to Postsynaptic Sites and NR2B , 2006, The Journal of Neuroscience.

[25]  Bernardo L Sabatini,et al.  Neuronal Activity Regulates Diffusion Across the Neck of Dendritic Spines , 2005, Science.

[26]  Xiaobing Chen,et al.  Mass of the postsynaptic density and enumeration of three key molecules. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M Neal Waxham,et al.  A Mechanism for Ca2+/Calmodulin-Dependent Protein Kinase II Clustering at Synaptic and Nonsynaptic Sites Based on Self-Association , 2005, The Journal of Neuroscience.

[28]  Jun Noguchi,et al.  Spine-Neck Geometry Determines NMDA Receptor-Dependent Ca2+ Signaling in Dendrites , 2005, Neuron.

[29]  James G McNally,et al.  FRAP analysis of binding: proper and fitting. , 2005, Trends in cell biology.

[30]  R. Hegde,et al.  The efficiency of protein compartmentalization into the secretory pathway. , 2004, Molecular biology of the cell.

[31]  John Lisman,et al.  Persistent Accumulation of Calcium/Calmodulin-Dependent Protein Kinase II in Dendritic Spines after Induction of NMDA Receptor-Dependent Chemical Long-Term Potentiation , 2004, The Journal of Neuroscience.

[32]  Takeharu Nagai,et al.  Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity , 2004, Nature Neuroscience.

[33]  D. Bray,et al.  Stochastic simulation of chemical reactions with spatial resolution and single molecule detail , 2004, Physical biology.

[34]  Matthias Weiss,et al.  Challenges and Artifacts in Quantitative Photobleaching Experiments , 2004, Traffic.

[35]  U. Bhalla Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. , 2004, Biophysical journal.

[36]  Xiaobing Chen,et al.  Distribution of Postsynaptic Density (PSD)-95 and Ca2+/Calmodulin-Dependent Protein Kinase II at the PSD , 2003, The Journal of Neuroscience.

[37]  J. Sanes,et al.  LTP: perils and progress , 2003, Nature Reviews Neuroscience.

[38]  E. Schuman,et al.  Protein synthesis in the dendrite. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  C. Winters,et al.  Glutamate-induced transient modification of the postsynaptic density , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Paul De Koninck,et al.  Interaction with the NMDA receptor locks CaMKII in an active conformation , 2001, Nature.

[41]  K. Svoboda,et al.  Ca2+ signaling in dendritic spines , 2001, Current Opinion in Neurobiology.

[42]  M. Kennedy,et al.  Densin-180 Forms a Ternary Complex with the α-Subunit of Ca2+/Calmodulin-Dependent Protein Kinase II and α-Actinin , 2001, The Journal of Neuroscience.

[43]  J. H. Connor,et al.  Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II , 2000, Nature Neuroscience.

[44]  S. Kaech,et al.  Volatile anesthetics block actin-based motility in dendritic spines. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  K. Shen,et al.  Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. , 1999, Science.

[46]  C. Winters,et al.  Ribosome Association Contributes to Restricting mRNAs to the Cell Body of Hippocampal Neurons , 1998, Molecular and Cellular Neuroscience.

[47]  Tobias Meyer,et al.  CaMKIIβ Functions As an F-Actin Targeting Module that Localizes CaMKIIα/β Heterooligomers to Dendritic Spines , 1998, Neuron.

[48]  A. Verkman,et al.  Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. , 1997, Biophysical journal.

[49]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[50]  R. Petralia,et al.  The segregation and expression of glutamate receptor subunits in cultured hippocampal neurons , 1993, Neuroscience.

[51]  T. Reese,et al.  Cytoplasmic organization in cerebellar dendritic spines , 1983, The Journal of cell biology.

[52]  A. Matus,et al.  High actin concentrations in brain dendritic spines and postsynaptic densities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[53]  H. Berg,et al.  Impulse responses in bacterial chemotaxis , 1982, Cell.

[54]  J. García de la Torre,et al.  Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications , 1981, Quarterly Reviews of Biophysics.

[55]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[56]  Yoshihisa Kubota,et al.  Multiple diffusion mechanisms due to nanostructuring in crowded environments. , 2007, Biophysical journal.

[57]  M. Kennedy,et al.  Densin-180 forms a ternary complex with the (alpha)-subunit of Ca2+/calmodulin-dependent protein kinase II and (alpha)-actinin. , 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  K. Shen,et al.  CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. , 1998, Neuron.

[59]  D. Bleyl Handbuch der Mikroskopie, 3. Aufl. Herausgegeben von H. Beyer und H. Riesenberg. 488 Seiten, 410 Abb., 30 Tab. VEB Verlag Technik, Berlin 1988. Preis: 48,50 M , 1989 .

[60]  Joachim Bergner,et al.  Handbuch der Mikroskopie , 1977 .