Empirical likelihood confidence regions for comparison distributions and roc curves

Abstract: The authors derive empirical likelihood confidence regions for the comparison distribution of two populations whose distributions are to be tested for equality using random samples. Another application they consider is to ROC curves, which are used to compare measurements of a diagnostic test from two populations. The authors investigate the smoothed empirical likelihood method for estimation in this context, and empirical likelihood based confidence intervals are obtained by means of the Wilks theorem. A bootstrap approach allows for the construction of confidence bands. The method is illustrated with data analysis and a simulation study. Resume: Les auteurs deduisent de la vraisemblance empirique des regions de confiance pour la distribution comparee de deux populations dont on veut tester l'egalite en loi au moyen d'echantillons aleatoires. Une autre application qu'ils considerent concerne les courbes ROC, qui permettent de comparer les resultats d'un test diagnostique effectue aupres de deux populations. L'estimation proposee par les auteurs dans ce contexte s'appuie sur une methode de lissage de la vraisemblance empirique qui conduit, grǎce au theoreme de Wilks, aux intervalles de confiance recherches. Une approche bootstrap permet en outre de construire des bandes de confiance. La methode est illustree au moyen de simulations et d'un jeu de donnees.

[1]  P. Hall On the rate of convergence of normal extremes , 1979 .

[2]  Margaret S. Pepe,et al.  A regression modelling framework for receiver operating characteristic curves in medical diagnostic testing , 1997 .

[3]  Emanuel Parzen,et al.  Statistical Methods Mining, Two Sample Data Analysis, Comparison Distributions, and Quantile Limit Theorems , 1998 .

[4]  S. Murphy Likelihood Ratio-Based Confidence Intervals in Survival Analysis , 1995 .

[5]  Gang Li,et al.  Semiparametric inference for a quantile comparison function with applications to receiver operating characteristic curves , 1999 .

[6]  Peter Hall,et al.  Smoothed empirical likelihood confidence intervals for quantiles , 1993 .

[7]  E. Holmgren,et al.  The P-P Plot as a Method for Comparing Treatment Effects , 1995 .

[8]  Chris Lloyd,et al.  Kernel estimators of the ROC curve are better than empirical , 1999 .

[9]  C. Metz,et al.  Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data. , 1998, Statistics in medicine.

[10]  K. Zou,et al.  Smooth non-parametric receiver operating characteristic (ROC) curves for continuous diagnostic tests. , 1997, Statistics in medicine.

[11]  Art B. Owen,et al.  Empirical Likelihood Confidence Bands in Density Estimation , 1993 .

[12]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[13]  John A. Swets,et al.  Evaluation of diagnostic systems : methods from signal detection theory , 1982 .

[14]  Chris Lloyd,et al.  Using Smoothed Receiver Operating Characteristic Curves to Summarize and Compare Diagnostic Systems , 1998 .

[15]  Gang Li,et al.  On nonparametric likelihood ratio estimation of survival probabilities for censored data , 1995 .

[16]  Mitchell H. Gail,et al.  A family of nonparametric statistics for comparing diagnostic markers with paired or unpaired data , 1989 .

[17]  Ian W. McKeague,et al.  CONFIDENCE TUBES FOR MULTIPLE QUANTILE PLOTS VIA EMPIRICAL LIKELIHOOD , 1999 .

[18]  I Hinberg,et al.  Receiver operator characteristic (ROC) curves and non-normal data: an empirical study. , 1990, Statistics in medicine.

[19]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[20]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[21]  Myles Hollander,et al.  Nonparametric likelihood ratio confidence bands for quantile functions from incomplete survival data , 1996 .

[22]  M. Wells,et al.  Quantile Comparison Functions in Two-Sample Problems, with Application to Comparisons of Diagnostic Markers , 1996 .

[23]  Thomas J. DiCiccio,et al.  Empirical Likelihood is Bartlett-Correctable , 1991 .

[24]  Myles Hollander,et al.  Likelihood Ratio-Based Confidence Bands for Survival Functions , 1997 .

[25]  B. Turnbull,et al.  NONPARAMETRIC AND SEMIPARAMETRIC ESTIMATION OF THE RECEIVER OPERATING CHARACTERISTIC CURVE , 1996 .

[26]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[27]  C B Begg,et al.  A General Regression Methodology for ROC Curve Estimation , 1988, Medical decision making : an international journal of the Society for Medical Decision Making.

[28]  B. W. Turnbull,et al.  Non- and Semi-Parametric Estimation of the Receiver Operating Characteristic (ROC) Curve , 1992 .

[29]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[30]  Jong Tae Kim An Order Selection Criterion for Testing Goodness of Fit , 2000 .

[31]  E. Parzen Nonparametric Statistical Data Modeling , 1979 .

[32]  Peter Hall,et al.  Methodology and algorithms of empirical likelihood , 1990 .