An agnostic analysis of the human AlphaFold2 proteome using local protein conformations.

[1]  A. D. de Brevern A Perspective on the (Rise and Fall of) Protein β-Turns , 2022, International journal of molecular sciences.

[2]  I. Sillitoe,et al.  Comprehensive Collection and Prediction of ABC Transmembrane Protein Structures in the AI Era of Structural Biology , 2022, bioRxiv.

[3]  K. P. Kepp,et al.  Assessment of AlphaFold2 for Human Proteins via Residue Solvent Exposure , 2022, J. Chem. Inf. Model..

[4]  G. Kedziora,et al.  AlphaFold2 models indicate that protein sequence determines both structure and dynamics , 2022, Scientific Reports.

[5]  Juliette Martin When Alphafold2 predictions go wrong for protein–protein complexes, is there something to be learnt? , 2022, Quarterly Reviews of Biophysics.

[6]  S. Teng,et al.  Computational Saturation Mutagenesis to Investigate the Effects of Neurexin-1 Mutations on AlphaFold Structure , 2022, Genes.

[7]  C. Deane,et al.  Membranome 3.0: Database of single‐pass membrane proteins with AlphaFold models , 2022, Protein science : a publication of the Protein Society.

[8]  T. Ishida,et al.  How to select the best model from AlphaFold2 structures? , 2022, bioRxiv.

[9]  E. Callaway What's next for AlphaFold and the AI protein-folding revolution , 2022, Nature.

[10]  Devlina Chakravarty,et al.  AlphaFold2 fails to predict protein fold switching , 2022, bioRxiv.

[11]  B. Robson De novo protein folding on computers. Benefits and challenges , 2022, Comput. Biol. Medicine.

[12]  G. Buel,et al.  Can AlphaFold2 predict the impact of missense mutations on structure? , 2022, Nature Structural & Molecular Biology.

[13]  G. Lukács,et al.  Ins and outs of AlphaFold2 transmembrane protein structure predictions , 2022, Cellular and molecular life sciences : CMLS.

[14]  D. Hassabis,et al.  Protein structure predictions to atomic accuracy with AlphaFold , 2022, Nature Methods.

[15]  Janet M Thornton,et al.  The impact of AlphaFold2 one year on , 2022, Nature Methods.

[16]  S. Ovchinnikov,et al.  ColabFold: making protein folding accessible to all , 2022, Nature Methods.

[17]  N. Srinivasan,et al.  Shaking the β-Bulges , 2021, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[18]  F. Eisenhaber,et al.  In memoriam of Narayanaswamy Srinivasan (1962–2021) , 2021, Proteins.

[19]  V. Uversky,et al.  Solving Protein Structure with AI: Viva AlphaFold and Co.! , 2021, Current protein and peptide science.

[20]  Brandon Yushan Feng,et al.  Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants , 2021, bioRxiv.

[21]  T. Sixma,et al.  AI revolutions in biology , 2021, EMBO reports.

[22]  Oriol Vinyals,et al.  Applying and improving AlphaFold at CASP14 , 2021, Proteins.

[23]  M. Sternberg,et al.  The AlphaFold Database of Protein Structures: A Biologist’s Guide , 2021, Journal of molecular biology.

[24]  R. Laskowski,et al.  AlphaFold heralds a data-driven revolution in biology and medicine , 2021, Nature Medicine.

[25]  Jeffrey Skolnick,et al.  AlphaFold 2: Why It Works and Its Implications for Understanding the Relationships of Protein Sequence, Structure, and Function , 2021, J. Chem. Inf. Model..

[26]  M. Crackower,et al.  Could AlphaFold revolutionize chemical therapeutics? , 2021, Nature Structural & Molecular Biology.

[27]  Barry Robson,et al.  Testing machine learning techniques for general application by using protein secondary structure prediction. A brief survey with studies of pitfalls and benefits using a simple progressive learning approach , 2021, Comput. Biol. Medicine.

[28]  N. Srinivasan,et al.  Hypervariability of accessible and inaccessible conformational space of proteins , 2021, Current research in structural biology.

[29]  Asher Mullard What does AlphaFold mean for drug discovery? , 2021, Nature Reviews Drug Discovery.

[30]  R. Pappu,et al.  AlphaFold and implications for intrinsically disordered proteins. , 2021, Journal of molecular biology.

[31]  P. Cramer AlphaFold2 and the future of structural biology , 2021, Nature Structural & Molecular Biology.

[32]  R. Russell,et al.  Next generation protein structure predictions and genetic variant interpretation. , 2021, Journal of molecular biology.

[33]  A. Valencia,et al.  The structural coverage of the human proteome before and after AlphaFold , 2021, bioRxiv.

[34]  R. Service Huge protein structure database could transform biology. , 2021, Science.

[35]  K. Kavukcuoglu,et al.  Highly accurate protein structure prediction for the human proteome , 2021, Nature.

[36]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[37]  A. Lupas,et al.  High‐accuracy protein structure prediction in CASP14 , 2021, Proteins.

[38]  A. Fersht AlphaFold - A personal perspective on the impact of Machine Learning. , 2021, Journal of molecular biology.

[39]  Dukka B Kc,et al.  Deep Learning-Based Advances in Protein Structure Prediction , 2021, International journal of molecular sciences.

[40]  A. Lupas,et al.  The breakthrough in protein structure prediction , 2021, The Biochemical journal.

[41]  S. Ventura,et al.  AlphaFold and the amyloid world. , 2021, Journal of molecular biology.

[42]  Mohammed AlQuraishi,et al.  Machine learning in protein structure prediction. , 2021, Current opinion in chemical biology.

[43]  N. Srinivasan,et al.  Conformational Strain Indicated by Ramachandran Angles for the Protein Backbone Is Only Weakly Related to the Flexibility. , 2021, The journal of physical chemistry. B.

[44]  Jean-Christophe Gelly,et al.  MEDUSA: Prediction of Protein Flexibility from Sequence. , 2021, Journal of molecular biology.

[45]  D. Goodsell,et al.  Seeing the PDB , 2021, The Journal of biological chemistry.

[46]  Peter B. McGarvey,et al.  UniProt: the universal protein knowledgebase in 2021 , 2020, Nucleic Acids Res..

[47]  T. Y. A. Liu,et al.  Performance and Limitation of Machine Learning Algorithms for Diabetic Retinopathy Screening: Meta-analysis , 2020, Journal of medical Internet research.

[48]  OUP accepted manuscript , 2021, Nucleic Acids Research.

[49]  Ewen Callaway,et al.  ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures , 2020, Nature.

[50]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[51]  David T. Jones,et al.  Improved protein structure prediction using potentials from deep learning , 2020, Nature.

[52]  C. Ramakrishnan,et al.  Stereochemical Assessment of (φ,ψ) Outliers in Protein Structures Using Bond Geometry-Specific Ramachandran Steric-Maps. , 2019, Structure.

[53]  Mohammed AlQuraishi,et al.  AlphaFold at CASP13 , 2019, Bioinform..

[54]  Yang Zhang,et al.  Deep‐learning contact‐map guided protein structure prediction in CASP13 , 2019, Proteins.

[55]  Nicolas K. Shinada,et al.  Discrete analyses of protein dynamics , 2019, Journal of biomolecular structure & dynamics.

[56]  John Marino,et al.  Strategies for Development of a Next-Generation Protein Sequencing Platform. , 2019, Trends in biochemical sciences.

[57]  Pushmeet Kohli,et al.  Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13) , 2019, Proteins.

[58]  A. Tramontano,et al.  Critical assessment of methods of protein structure prediction (CASP)—Round XII , 2018, Proteins.

[59]  K. Guruprasad,et al.  gβ- and gγ-turns in proteins revisited: A new set of amino acid turn-type dependent positional preferences and potentials , 2000, Journal of Biosciences.

[60]  Roland L. Dunbrack,et al.  The Rosetta all-atom energy function for macromolecular modeling and design , 2017, bioRxiv.

[61]  M. Bansal,et al.  Structural and Functional Analyses of PolyProline-II helices in Globular Proteins , 2016, bioRxiv.

[62]  A. D. de Brevern Extension of the classical classification of β-turns , 2016, Scientific Reports.

[63]  Johannes Söding,et al.  Bbcontacts: Prediction of Β-strand Pairing from Direct Coupling Patterns , 2015, Bioinform..

[64]  Gert Vriend,et al.  A series of PDB related databases for everyday needs , 2010, Nucleic Acids Res..

[65]  Yang Zhang,et al.  The I-TASSER Suite: protein structure and function prediction , 2014, Nature Methods.

[66]  Krzysztof Fidelis,et al.  CASP10 results compared to those of previous CASP experiments , 2014, Proteins.

[67]  Pierrick Craveur,et al.  β‐Bulges: Extensive structural analyses of β‐sheets irregularities , 2013, Protein science : a publication of the Protein Society.

[68]  A. G. Brevern,et al.  Cis–trans isomerization of omega dihedrals in proteins , 2013, Amino Acids.

[69]  N. Srinivasan,et al.  Cis–trans peptide variations in structurally similar proteins , 2012, Amino Acids.

[70]  A. D. de Brevern,et al.  Assignment of PolyProline II Conformation and Analysis of Sequence – Structure Relationship , 2011, PloS one.

[71]  Bohdan Schneider,et al.  A short survey on protein blocks , 2010, Biophysical Reviews.

[72]  A. Bornot,et al.  Analysis of loop boundaries using different local structure assignment methods , 2009, Protein science : a publication of the Protein Society.

[73]  M. Tyagi,et al.  Local Protein Structures , 2007 .

[74]  Aurélie Bornot,et al.  Protein beta-turn assignments , 2006, Bioinformation.

[75]  Avner Schlessinger,et al.  PROFbval: predict flexible and rigid residues in proteins , 2006, Bioinform..

[76]  Fabien Cailliez,et al.  Secondary structure assignment that accurately reflects physical and evolutionary characteristics , 2005, BMC Bioinformatics.

[77]  B. Rost,et al.  Protein flexibility and rigidity predicted from sequence , 2005, Proteins.

[78]  Alexandre G. de Brevern,et al.  New assessment of a structural alphabet , 2005, Silico Biol..

[79]  Alexandre G. de Brevern,et al.  Use of a structural alphabet for analysis of short loops connecting repetitive structures , 2004, BMC Bioinformatics.

[80]  David Baker,et al.  Protein Structure Prediction Using Rosetta , 2004, Numerical Computer Methods, Part D.

[81]  David Eisenberg,et al.  The discovery of the α-helix and β-sheet, the principal structural features of proteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Guoli Wang,et al.  PISCES: a protein sequence culling server , 2003, Bioinform..

[83]  A. Sali,et al.  Protein Structure Prediction and Structural Genomics , 2001, Science.

[84]  C. Etchebest,et al.  Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks , 2000, Proteins.

[85]  M. Bansal,et al.  HELANAL: A Program to Characterize Helix Geometry in Proteins , 2000, Journal of biomolecular structure & dynamics.

[86]  Manju Bansal,et al.  Geometrical and Sequence Characteristics of α-Helices in Globular Proteins , 1998 .

[87]  J. Thornton,et al.  PROMOTIF—A program to identify and analyze structural motifs in proteins , 1996, Protein science : a publication of the Protein Society.

[88]  P. Argos,et al.  Knowledge‐based protein secondary structure assignment , 1995, Proteins.

[89]  J. Thornton,et al.  A revised set of potentials for β‐turn formation in proteins , 1994 .

[90]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[91]  J. Thornton,et al.  Identification, classification, and analysis of beta‐bulges in proteins , 1993, Protein science : a publication of the Protein Society.

[92]  E. Milner-White,et al.  Situations of gamma-turns in proteins. Their relation to alpha-helices, beta-sheets and ligand binding sites. , 1990, Journal of molecular biology.

[93]  E J Milner-White,et al.  Beta-bulges within loops as recurring features of protein structure. , 1987, Biochimica et biophysica acta.

[94]  G. Rose,et al.  Turns in peptides and proteins. , 1985, Advances in protein chemistry.

[95]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[96]  C. Toniolo,et al.  Intramolecularly hydrogen-bonded peptide conformations. , 1980, CRC critical reviews in biochemistry.

[97]  J. Richardson,et al.  The beta bulge: a common small unit of nonrepetitive protein structure. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[98]  A. Shrake,et al.  Environment and exposure to solvent of protein atoms. Lysozyme and insulin. , 1973, Journal of molecular biology.

[99]  C. Venkatachalam Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units , 1968, Biopolymers.

[100]  P. Cowan,et al.  The Polypeptide Chain Configuration of Collagen , 1955, Nature.

[101]  B. W. Low,et al.  THE π HELIX—A HYDROGEN BONDED CONFIGURATION OF THE POLYPEPTIDE CHAIN , 1952 .

[102]  L. Pauling,et al.  The pleated sheet, a new layer configuration of polypeptide chains. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[103]  L. Pauling,et al.  The structure of fibrous proteins of the collagen-gelatin group. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[104]  L. Pauling,et al.  The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[105]  J. Kendrew,et al.  Polypeptide chain configurations in crystalline proteins , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.