Bootstrapping Boosted Random Ferns for discriminative and efficient object classification

In this paper we show that the performance of binary classifiers based on Boosted Random Ferns can be significantly improved by appropriately bootstrapping the training step. This results in a classifier which is both highly discriminative and computationally efficient and is particularly suitable when only small sets of training images are available. During the learning process, a small set of labeled images is used to train the boosting binary classifier. The classifier is then evaluated over the training set and warped versions of the classified and misclassified patches are progressively added into the positive and negative sample sets for a new re-training step. In this paper we thoroughly study the conditions under which this bootstrapping scheme improves the detection rates. In particular we assess the quality of detection both as a function of the number of bootstrapping iterations and the size of the training set. We compare our algorithm against state-of-the-art approaches for several databases including faces, cars, motorbikes and horses, and show remarkable improvements in detection rates with just a few bootstrapping steps.

[1]  Björn Ommer,et al.  Voting by Grouping Dependent Parts , 2010, ECCV.

[2]  Cordelia Schmid,et al.  Bandit Algorithms for Tree Search , 2007, UAI.

[3]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[4]  Christoph H. Lampert,et al.  Beyond sliding windows: Object localization by efficient subwindow search , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Francesc Moreno-Noguer,et al.  Shared Random Ferns for Efficient Detection of Multiple Categories , 2010, 2010 20th International Conference on Pattern Recognition.

[6]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[7]  Ben Taskar,et al.  Object detection via boundary structure segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[9]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[10]  Robert E. Schapire,et al.  The strength of weak learnability , 1990, Mach. Learn..

[11]  Francesc Moreno-Noguer,et al.  Dependent Multiple Cue Integration for Robust Tracking , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Hayko Riemenschneider,et al.  Using Partial Edge Contour Matches for Efficient Object Category Localization , 2010, ECCV.

[13]  Bernt Schiele,et al.  Integrating representative and discriminant models for object category detection , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[14]  Vincent Lepetit,et al.  Keypoint recognition using randomized trees , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Lluís Màrquez i Villodre,et al.  Boosting Applied toe Word Sense Disambiguation , 2000, ECML.

[16]  David A. McAllester,et al.  A discriminatively trained, multiscale, deformable part model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Francesc Moreno-Noguer,et al.  Efficient rotation invariant object detection using boosted Random Ferns , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Fatih Murat Porikli,et al.  Integral histogram: a fast way to extract histograms in Cartesian spaces , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[19]  Jitendra Malik,et al.  Object detection using a max-margin Hough transform , 2009, CVPR.

[20]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[21]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[22]  Vincent Lepetit,et al.  Fast Keypoint Recognition in Ten Lines of Code , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Jiri Matas,et al.  Online learning of robust object detectors during unstable tracking , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[24]  Jiri Matas,et al.  Weighted Sampling for Large-Scale Boosting , 2008, BMVC.

[25]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[26]  Ayhan Demiriz,et al.  Linear Programming Boosting via Column Generation , 2002, Machine Learning.

[27]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[28]  Vincent Lepetit,et al.  Dominant orientation templates for real-time detection of texture-less objects , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Juergen Gall,et al.  Class-specific Hough forests for object detection , 2009, CVPR.

[30]  Paul A. Viola,et al.  Unsupervised improvement of visual detectors using cotraining , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[31]  Francesc Moreno-Noguer,et al.  Efficient 3D Object Detection using Multiple Pose-Specific Classifiers , 2011, BMVC.

[32]  SchieleBernt,et al.  Robust Object Detection with Interleaved Categorization and Segmentation , 2008 .

[33]  David G. Lowe,et al.  Multiclass Object Recognition with Sparse, Localized Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[34]  Dan Roth,et al.  Learning a Sparse Representation for Object Detection , 2002, ECCV.

[35]  Takeo Kanade,et al.  A statistical method for 3D object detection applied to faces and cars , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[36]  Carsten Lund,et al.  Priority sampling for estimation of arbitrary subset sums , 2007, JACM.

[37]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Y. Freund,et al.  Discussion of the Paper \additive Logistic Regression: a Statistical View of Boosting" By , 2000 .

[39]  Björn Ommer,et al.  Beyond straight lines — Object detection using curvature , 2011, 2011 18th IEEE International Conference on Image Processing.

[40]  Dariu Gavrila,et al.  An Experimental Study on Pedestrian Classification , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Ana L. N. Fred,et al.  Combining multiple clusterings using evidence accumulation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[43]  Lluís Màrquez i Villodre,et al.  Boosting Applied to Word Sense Disambiguation , 2000, ArXiv.

[44]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[45]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[46]  Frédéric Jurie,et al.  Groups of Adjacent Contour Segments for Object Detection , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Francesc Moreno-Noguer,et al.  Deformation and illumination invariant feature point descriptor , 2011, CVPR 2011.

[48]  Bernt Schiele,et al.  Robust Object Detection with Interleaved Categorization and Segmentation , 2008, International Journal of Computer Vision.

[49]  Andrew Blake,et al.  Contour-based learning for object detection , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[50]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[51]  Cordelia Schmid,et al.  Accurate Object Detection with Deformable Shape Models Learnt from Images , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[53]  Bernt Schiele,et al.  Multiple Object Class Detection with a Generative Model , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[54]  D. Geman,et al.  Stationary Features and Cat Detection , 2008 .

[55]  Jiebo Luo,et al.  Image transform bootstrapping and its applications to semantic scene classification , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).