Radiation Pressure-Supported Active Galactic Nucleus Tori with Hard X-Ray and Stellar Heating

The dynamics and structure of toroidal obscuration around active galactic nuclei remain uncertain and controversial. In this paper we extend earlier work on the dynamical role of infrared radiation pressure by adding the effects of two kinds of distributed heating: Compton heating due to hard X-rays from the nucleus and local starlight heating. We find numerical solutions to the axisymmetric hydrostatic equilibrium, energy balance, and photon diffusion equations including these effects. Within the regime of typical parameters, the two different sources of additional heating have very similar effects: the density profile within the torus becomes shallower both radially and vertically, but for plausible heating rates, there is only minor change (relative to the source-free case) in the distribution of column density with solid angle. The most interesting consequence of distributed heating is that it selects out a relatively narrow range of parameters permitting an equilibrium, particularly -->(L/LE)/τT. We discuss the implications of both the narrowness of the permitted range and its approximate coincidence with the range inferred from observations.

[1]  Yasuhiro Hashimoto,et al.  Suzaku Observations of Active Galactic Nuclei Detected in the Swift BAT Survey: Discovery of a “New Type” of Buried Supermassive Black Holes , 2007, 0706.1168.

[2]  Z. Ivezic,et al.  Dust Emission from Active Galactic Nuclei , 2002 .

[3]  Alberto Franceschini,et al.  Thick Tori around Active Galactic Nuclei: The Case for Extended Tori and Consequences for Their X-Ray and Infrared Emission , 1997 .

[4]  T. D. Matteo,et al.  Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment , 2000 .

[5]  E. Pier,et al.  Radiation-pressure-supported obscuring tori around active galactic nuclei , 1992 .

[6]  Sebastien Foucaud,et al.  Evidence for a large fraction of Compton-thick quasars at high redshift , 2006, astro-ph/0611739.

[7]  A. Marconi,et al.  Local supermassive black holes, relics of active galactic nuclei and the X-ray background , 2003, astro-ph/0311619.

[8]  Todd A. Thompson,et al.  Radiation Pressure-supported Starburst Disks and Active Galactic Nucleus Fueling , 2005 .

[9]  R. Genzel,et al.  A Close Look at Star Formation around Active Galactic Nuclei , 2007, 0704.1374.

[10]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[11]  N. Gehrels,et al.  The First INTEGRAL AGN Catalog , 2005, astro-ph/0510530.

[12]  E. Quataert,et al.  From Thin to Thick: The Impact of X-Ray Irradiation on Accretion Disks in Active Galactic Nuclei , 2006, astro-ph/0610263.

[13]  A. Königl,et al.  DISK-DRIVEN HYDROMAGNETIC WINDS AS A KEY INGREDIENT OF ACTIVE GALACTIC NUCLEI UNIFICATION SCHEMES , 1994 .

[14]  Julian H. Krolik,et al.  Infrared spectra of obscuring dust tori around active galactic nuclei. I - Calculational method and basic trends , 1992 .

[15]  J. Moran,et al.  The Distribution of H2O Maser Emission in the Nucleus of NGC 4945 , 1997, astro-ph/9702220.

[16]  T. Henning,et al.  Rosseland and Planck mean opacities for protoplanetary discs , 2003, astro-ph/0308344.

[17]  A. Cimatti,et al.  MISDIRECTED QUASARS AND EVOLVED STARS IN DISTANT RADIO GALAXIES , 1994 .

[18]  Julian H. Krolik,et al.  Molecular tori in Seyfert galaxies - Feeding the monster and hiding it , 1988 .

[19]  M. Rowan-Robinson,et al.  Dusty discs in active galactic nuclei , 1995 .

[20]  Peter D. Barthel,et al.  Is every quasar beamed , 1989 .

[21]  N. O. M. Urray Radiation Pressure Supported Starburst Disks & Agn Fueling , 2005 .

[22]  H. E. Bignall,et al.  Green Bank Telescope Observations of the Water Masers of NGC 3079: Accretion Disk Magnetic Field and Maser Scintillation , 2007 .

[23]  J. Dunlop,et al.  The cosmological evolution of quasar black hole masses , 2003, astro-ph/0310267.

[24]  Julian H. Krolik,et al.  AGN obscuring tori supported by infrared radiation pressure , 2007 .

[25]  Candidate Type II Quasars from the SDSS: III. Spectropolarimetry Reveals Hidden Type I Nuclei , 2004, astro-ph/0410054.

[26]  S. Borgani,et al.  X-ray spectral properties of active galactic nuclei in the Chandra deep field south , 2006, astro-ph/0602127.

[27]  S. Baum,et al.  H 2O and OH Masers as Probes of the Obscuring Torus in NGC 1068 , 1996 .

[28]  R. Maiolino,et al.  The Distribution of Absorbing Column Densities among Seyfert 2 Galaxies , 1999, astro-ph/9902377.

[29]  Arjun Dey,et al.  Black Hole Masses and Eddington Ratios at 0.3 < z < 4 , 2005, astro-ph/0508657.