Numerical dissipation vs. subgrid-scale modelling for large eddy simulation

This study presents an alternative way to perform large eddy simulation based on a targeted numerical dissipation introduced by the discretization of the viscous term. It is shown that this regularisation technique is equivalent to the use of spectral vanishing viscosity. The flexibility of the method ensures high-order accuracy while controlling the level and spectral features of this purely numerical viscosity. A Pao-like spectral closure based on physical arguments is used to scale this numerical viscosity a priori. It is shown that this way of approaching large eddy simulation is more efficient and accurate than the use of the very popular Smagorinsky model in standard as well as in dynamic version. The main strength of being able to correctly calibrate numerical dissipation is the possibility to regularise the solution at the mesh scale. Thanks to this property, it is shown that the solution can be seen as numerically converged. Conversely, the two versions of the Smagorinsky model are found unable to ensure regularisation while showing a strong sensitivity to numerical errors. The originality of the present approach is that it can be viewed as implicit large eddy simulation, in the sense that the numerical error is the source of artificial dissipation, but also as explicit subgrid-scale modelling, because of the equivalence with spectral viscosity prescribed on a physical basis.

[1]  Richard Pasquetti,et al.  High-Order Algorithms for Large-Eddy Simulation of Incompressible Flows , 2002, J. Sci. Comput..

[2]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[3]  J. P. Boris,et al.  New insights into large eddy simulation , 1992 .

[4]  E. Lamballais,et al.  Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows , 2014 .

[5]  M. Lesieur,et al.  Parameterization of Small Scales of Three-Dimensional Isotropic Turbulence Utilizing Spectral Closures , 1981 .

[6]  P. Moin,et al.  The basic equations for the large eddy simulation of turbulent flows in complex geometry , 1995 .

[7]  Neil D. Sandham,et al.  Compressible mixing layer growth rate and turbulence characteristics , 1996, Journal of Fluid Mechanics.

[8]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[9]  F. Grinstein,et al.  Estimating the effective Reynolds number in implicit large-eddy simulation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  E. Koschmieder Taylor vortices between eccentric cylinders , 1976 .

[11]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[12]  S. Ghosal An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence , 1996 .

[13]  Spencer J. Sherwin,et al.  Implicit Large-Eddy Simulation of a Wingtip Vortex , 2016 .

[14]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[15]  R. Kraichnan Eddy Viscosity in Two and Three Dimensions , 1976 .

[16]  Eric Serre,et al.  A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities , 2007, J. Comput. Phys..

[17]  Johan Meyers,et al.  Optimality of the dynamic procedure for large-eddy simulations , 2005 .

[18]  J. A. Domaradzki,et al.  Large eddy simulations without explicit eddy viscosity models , 2010 .

[19]  R. Pasquetti,et al.  Spectral vanishing viscosity method for LES: sensitivity to the SVV control parameters , 2005 .

[20]  R. A. Antonia,et al.  Scale-by-scale energy budget on the axis of a turbulent round jet , 2005 .

[21]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[22]  L. Biferale,et al.  Dynamics and statistics of heavy particles in turbulent flows , 2006, nlin/0601027.

[23]  Christer Fureby,et al.  Simulation of transition and turbulence decay in the Taylor–Green vortex , 2007 .

[24]  Bernardus J. Geurts,et al.  Numerically induced high-pass dynamics in large-eddy simulation , 2005 .

[25]  L. Margolin,et al.  Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics , 2011 .

[26]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[27]  Uriel Frisch,et al.  Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence. , 2008, Physical review letters.

[28]  Krishnan Mahesh,et al.  Analysis of numerical errors in large eddy simulation using statistical closure theory , 2007, J. Comput. Phys..

[29]  Sylvain Laizet,et al.  High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy , 2009, J. Comput. Phys..

[30]  Nikolaus A. Adams,et al.  Direct modelling of subgrid scales of turbulence in large eddy simulations , 2002 .

[31]  P. Comte,et al.  Large-Eddy Simulations of Turbulence: LES formalism in physical space , 2005 .

[32]  F. Grinstein,et al.  Large Eddy simulation of high-Reynolds-number free and wall-bounded flows , 2002 .

[33]  Fabrice Debbasch,et al.  Effective dissipation and turbulence in spectrally truncated euler flows. , 2004, Physical review letters.

[34]  P. Moin,et al.  On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows , 1997 .

[35]  Joel Ferziger,et al.  Higher Order Methods for Incompressible Fluid Flow: by Deville, Fischer and Mund, Cambridge University Press, 499 pp. , 2003 .

[36]  Johan Meyers,et al.  A computational error-assessment of central finite-volume discretizations in large-eddy simulation using a Smagorinsky model , 2007, J. Comput. Phys..

[37]  M. Germano,et al.  Turbulence: the filtering approach , 1992, Journal of Fluid Mechanics.

[38]  Stephen B. Pope,et al.  Direct numerical simulation of homogeneous turbulence with hyperviscosity , 2005 .

[39]  F. Nicoud,et al.  Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor , 1999 .

[40]  H. Tal-Ezer Spectral methods in time for parabolic problems , 1989 .

[41]  William J. Rider,et al.  Modeling turbulent flow with implicit LES , 2006 .

[42]  Patrick Bontoux,et al.  High-order Large Eddy Simulations of Confined Rotor-Stator Flows , 2012, 1305.2885.

[43]  William J. Rider,et al.  Implicit Large Eddy Simulation: Numerical Regularization: The Numerical Analysis of Implicit Subgrid Models , 2007 .

[44]  E. Tadmor,et al.  Analysis of the spectral vanishing viscosity method for periodic conservation laws , 1989 .

[45]  Volker Gravemeier,et al.  The variational multiscale method for laminar and turbulent flow , 2006 .

[46]  Christophe Bailly,et al.  Large eddy simulations of transitional round jets: Influence of the Reynolds number on flow development and energy dissipation , 2006 .

[47]  S. Sherwin,et al.  STABILISATION OF SPECTRAL/HP ELEMENT METHODS THROUGH SPECTRAL VANISHING VISCOSITY: APPLICATION TO FLUID MECHANICS MODELLING , 2006 .

[48]  E. Dick,et al.  On the performance of relaxation filtering for large-eddy simulation , 2013 .

[49]  D. Drikakis,et al.  Large eddy simulation using high-resolution and high-order methods , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  George Em Karniadakis,et al.  A Spectral Vanishing Viscosity Method for Large-Eddy Simulations , 2000 .

[51]  J. C. Vassilicos,et al.  A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution DNS of fractal generated turbulence , 2010 .

[52]  Christophe Bailly,et al.  Computation of a high Reynolds number jet and its radiated noise using large eddy simulation based on explicit filtering , 2006 .

[53]  B. Geurts Elements of direct and large-eddy simulation , 2003 .

[54]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[55]  Nikolaus A. Adams,et al.  On implicit subgrid-scale modeling in wall-bounded flows , 2007 .

[56]  B. Geurts,et al.  Database-analysis of errors in Large-Eddy Simulation , 2003 .

[57]  David Barth,et al.  Hyperviscosity , 2014, Transfusion.

[58]  M. Schäfer,et al.  From stratified wakes to rotor–stator flows by an SVV–LES method , 2008 .

[59]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[60]  J. Ullrich,et al.  Mechanism for electron transfer in fast ion-atomic collisions. , 2008, Physical review letters.

[61]  Erik Dick,et al.  Construction of explicit and implicit dynamic finite difference schemes and application to the large-eddy simulation of the Taylor-Green vortex , 2009, J. Comput. Phys..

[62]  C. W. Hirt Computer Studies of Time‐Dependent Turbulent Flows , 1969 .

[63]  P. Sagaut,et al.  On the Use of Shock-Capturing Schemes for Large-Eddy Simulation , 1999 .

[64]  Y. Pao Structure of Turbulent Velocity and Scalar Fields at Large Wavenumbers , 1965 .

[65]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[66]  Chuanju Xu,et al.  Stabilized spectral element computations of high Reynolds number incompressible flows , 2004 .

[67]  Dimitris Drikakis,et al.  On the implicit large eddy simulations of homogeneous decaying turbulence , 2007, J. Comput. Phys..

[68]  Christophe Bailly,et al.  Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation , 2009, Journal of Fluid Mechanics.

[69]  Dimitris Drikakis,et al.  Implicit Large Eddy Simulation of weakly-compressible turbulent channel flow , 2015 .

[70]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[71]  Nikos Nikiforakis,et al.  ANALYSIS OF IMPLICIT LES METHODS , 2008 .

[72]  G. Aubard,et al.  Comparison of Subgrid-scale Viscosity Models and Selective Filtering Strategy for Large-eddy Simulations , 2013 .

[73]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[74]  Marcel Lesieur,et al.  Turbulence in fluids , 1990 .

[75]  Sylvain Laizet,et al.  Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation , 2011, J. Comput. Phys..

[76]  Axel Brandenburg,et al.  Inertial range scaling in numerical turbulence with hyperviscosity. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[78]  Fabien Crouzet,et al.  Filter shape dependence and effective scale separation in large-eddy simulations based on relaxation filtering , 2011 .

[79]  Leonhard Kleiser,et al.  Analysis of the SGS energy budget for deconvolution- and relaxation-based models in channel flow , 2006 .

[80]  Nikolaus A. Adams,et al.  An adaptive local deconvolution method for implicit LES , 2005, J. Comput. Phys..

[81]  P. Moin,et al.  A further study of numerical errors in large-eddy simulations , 2003 .

[82]  Véronique Fortuné,et al.  LES of a turbulent jet impinging on a heated wall using high-order numerical schemes , 2014 .

[83]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[84]  C. Tam,et al.  A Study of the Short Wave Components in Computational Acoustics , 1993 .

[85]  Milton S. Plesset,et al.  Viscous Effects in Rayleigh-Taylor Instability. , 1974 .

[86]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[87]  Christophe Bailly,et al.  A study of differentiation errors in large-eddy simulations based on the EDQNM theory , 2008, J. Comput. Phys..

[88]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[89]  S. Orszag,et al.  Small-scale structure of the Taylor–Green vortex , 1983, Journal of Fluid Mechanics.

[90]  H. Lugt,et al.  Laminar flow behavior under slip−boundary conditions , 1975 .

[91]  Steven A. Orszag,et al.  Local energy flux and subgrid-scale statistics in three-dimensional turbulence , 1998, Journal of Fluid Mechanics.

[92]  John Christos Vassilicos,et al.  Local equilibrium hypothesis and Taylor’s dissipation law , 2016 .

[93]  Richard Pasquetti,et al.  Spectral Vanishing Viscosity Method for Large-Eddy Simulation of Turbulent Flows , 2006, J. Sci. Comput..

[94]  Ning Li,et al.  Incompact3d: A powerful tool to tackle turbulence problems with up to O(105) computational cores , 2011 .

[95]  Joseph Mathew,et al.  An explicit filtering method for large eddy simulation of compressible flows , 2003 .

[96]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[97]  M. Markus,et al.  Fluctuation theorem for a deterministic one-particle system. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.