Comparison of Five Tests of Fit for the Extreme Value Distribution

Tests for the Extreme Value distribution based on the sample skewness and kurtosis coefficients are shown to be related to components of smooth tests of goodness of fit and are compared with tests due to Anderson-Darling, Shapiro-Brain and Liao-Shimokawa. Two examples are given.

[1]  F. Mallor,et al.  An introduction to statistical modelling of extreme values. Application to calculate extreme wind speeds , 2009 .

[2]  Olivier Thas,et al.  A GENERALIZED EMERSON RECURRENCE RELATION , 2008 .

[3]  Quentin L. Burrell,et al.  Handbook of Exponential and Related Distributions for Engineers and Scientists , 2008 .

[4]  Olivier Thas,et al.  Smooth Tests for the Zero‐Inflated Poisson Distribution , 2005, Biometrics.

[5]  Bernhard Klar,et al.  Diagnostic smooth tests of fit , 2000 .

[6]  Norbert Henze,et al.  Recent and classical goodness-of-fit tests for the Poisson distribution , 2000 .

[7]  Min Liao,et al.  A new goodness-of-fit test for type-I extreme-value and 2-parameter weibull distributions with estimated parameters , 1999 .

[8]  Bernhard Klar,et al.  PROPERLY RESCALED COMPONENTS OF SMOOTH TESTS OF FIT ARE DIAGNOSTIC , 1996 .

[9]  John C. W. Rayner,et al.  Interpreting the skewness coefficient , 1995 .

[10]  A. W. Kemp,et al.  Kendall's Advanced Theory of Statistics. , 1994 .

[11]  Terry L King Smooth Tests of Goodness of Fit , 1991 .

[12]  S. Karlin,et al.  Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Richard L. Smith,et al.  A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .

[14]  S. Shapiro,et al.  W-test for the Weibull distribution , 1987 .

[15]  Lesław Gajek,et al.  On Improving Density Estimators which are not Bona Fide Functions , 1986 .

[16]  Michael A. Stephens,et al.  Goodness of fit for the extreme value distribution , 1977 .