On the ubiquity of Gorenstein rings

Introduction APIARY [23~, and subsequently GORENSTEIN Eg] and SAMUEL [2(r proved 9 3-~ t that if (2 is a point on a plane curve then no=2d Q, where dQ=dlmw0/ 9 Q and nQ = dim C'Q/~Q, 9 being the local ring of Q, CQ its normalization, and ~Q the conductor. This condition has received attention from a variety of algebraic geometers, and recently ROQUETTE [19J and BEI~GER [52 have put it i n a rather general algebraic setting. Furthermore, ROSENLICHT [24~ (see also [211) proved that ~ o = 2 d o if, and only if, f2b is a free 9 of rank one, where f2b is the module of differentials regular at Q (in the sense of ROSENLICHT). If V is a non singular variety of dimension n and.C2 V the sheaf of differential forms of degree n on V, then .0 V is a locally free sheaf of rank one. Let W be a subvariety of codimension q at all of its points. If W is non singular Dw is defined, and GROTHENDIECK has shown that

[1]  P. Roquette Über den Singularitätsgrad von Teilringen in Funktionenkörpern , 1961 .

[2]  A. Grothendieck Théorèmes de dualité pour les faisceaux algébriques cohérents , 1958 .

[3]  R. Apéry La géométrie algébrique , 1943 .

[4]  J. Dieudonne Remarks on quasi-Frobenius rings , 1958 .

[5]  J. Jans On finitely generated modules over Noetherian rings , 1963 .

[6]  Daniel Gorenstein,et al.  An arithmetic theory of adjoint plane curves , 1952 .

[7]  R. Berger Über eine Klasse unvergabelter lokaler Ringe , 1962 .

[8]  Eben Matlis,et al.  Injective modules over Noetherian rings. , 1958 .

[9]  Eben Matlis Some Properties of Noetherian Domains of Dimension One , 1961, Canadian Journal of Mathematics.

[10]  E. Dade SOME INDECOMPOSABLE GROUP REPRESENTATIONS , 1963 .

[11]  I. Reiner,et al.  Representations of Cyclic Groups in Rings of Integers, II , 1962 .

[12]  Maurice Auslander,et al.  The Brauer group of a commutative ring , 1960 .

[13]  M. Rosenlicht,et al.  Equivalence Relations on Algebraic Curves , 1952 .

[14]  I. Kaplansky Homological dimension of rings and modules , 1958 .

[15]  H. Bass,et al.  TORSION FREE AND PROTECTIVE MODULES , 2010 .

[16]  H. Bass Finitistic dimension and a homological generalization of semi-primary rings , 1960 .

[17]  H. Bass Injective dimension in Noetherian rings , 1962 .

[18]  D. Rees,et al.  The grade of an ideal or module , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  J. Jans Duality in Noetherian rings , 1961 .