Inferring Horizontal Gene Transfer

Horizontal or Lateral Gene Transfer (HGT or LGT) is the transmission of portions of genomic DNA between organisms through a process decoupled from vertical inheritance. In the presence of HGT events, different fragments of the genome are the result of different evolutionary histories. This can therefore complicate the investigations of evolutionary relatedness of lineages and species. Also, as HGT can bring into genomes radically different genotypes from distant lineages, or even new genes bearing new functions, it is a major source of phenotypic innovation and a mechanism of niche adaptation. For example, of particular relevance to human health is the lateral transfer of antibiotic resistance and pathogenicity determinants, leading to the emergence of pathogenic lineages [1]. Computational identification of HGT events relies upon the investigation of sequence composition or evolutionary history of genes. Sequence composition-based ("parametric") methods search for deviations from the genomic average, whereas evolutionary history-based ("phylogenetic") approaches identify genes whose evolutionary history significantly differs from that of the host species. The evaluation and benchmarking of HGT inference methods typically rely upon simulated genomes, for which the true history is known. On real data, different methods tend to infer different HGT events, and as a result it can be difficult to ascertain all but simple and clear-cut HGT events.

[1]  M. Steel,et al.  Subtree Transfer Operations and Their Induced Metrics on Evolutionary Trees , 2001 .

[2]  G. Perrière,et al.  The source of laterally transferred genes in bacterial genomes , 2003, Genome Biology.

[3]  A. Rodrigo,et al.  Likelihood-based tests of topologies in phylogenetics. , 2000, Systematic biology.

[4]  Vincent Berry,et al.  Reconciliation and local gene tree rearrangement can be of mutual profit , 2013, Algorithms for Molecular Biology.

[5]  J. Glasner,et al.  Genome-wide detection and analysis of homologous recombination among sequenced strains of Escherichia coli , 2006, Genome Biology.

[6]  W. Doolittle,et al.  Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. , 2006, Genome research.

[7]  Eric Bapteste,et al.  Deduction of probable events of lateral gene transfer through comparison of phylogenetic trees by recursive consolidation and rearrangement , 2005, BMC Evolutionary Biology.

[8]  Gergely J. Szöllősi,et al.  Lateral Gene Transfer from the Dead , 2012, Systematic biology.

[9]  J Hacker,et al.  Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution , 1997, Molecular microbiology.

[10]  J. Parkhill,et al.  Comparative genomic structure of prokaryotes. , 2004, Annual review of genetics.

[11]  V. Zhurkin,et al.  DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Mikhail S. Gelfand,et al.  Genome-Wide Molecular Clock and Horizontal Gene Transfer in Bacterial Evolution , 2004, Journal of bacteriology.

[13]  M. Ragan,et al.  Inferring Genome Trees by Using a Filter To Eliminate Phylogenetically Discordant Sequences and a Distance Matrix Based on Mean Normalized BLASTP Scores , 2002, Journal of bacteriology.

[14]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[15]  Timothy J. Harlow,et al.  Do different surrogate methods detect lateral genetic transfer events of different relative ages? , 2006, Trends in microbiology.

[16]  P. Deschavanne,et al.  Correlation of GC content with replication timing and repair mechanisms in weakly expressed E.coli genes. , 1995, Nucleic acids research.

[17]  Bernard Henrissat,et al.  Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes , 2010, Proceedings of the National Academy of Sciences.

[18]  H. Ochman,et al.  Molecular archaeology of the Escherichia coli genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Nicholas Hamilton,et al.  Phylogenetic identification of lateral genetic transfer events , 2006, BMC Evolutionary Biology.

[20]  P. Deschavanne,et al.  Genomic signature: characterization and classification of species assessed by chaos game representation of sequences. , 1999, Molecular biology and evolution.

[21]  S Brunak,et al.  Structural analysis of DNA sequence: evidence for lateral gene transfer in Thermotoga maritima. , 2000, Nucleic acids research.

[22]  Joel Lexchin,et al.  Why do cancer drugs get such an easy ride? , 2015, BMJ : British Medical Journal.

[23]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[24]  Weilong Hao,et al.  Uncovering rate variation of lateral gene transfer during bacterial genome evolution , 2008, BMC Genomics.

[25]  Georgios S. Vernikos,et al.  Genetic flux over time in the Salmonella lineage , 2007, Genome Biology.

[26]  Christophe Dessimoz,et al.  Inferring orthology and paralogy. , 2012, Methods in molecular biology.

[27]  K. Karrer,et al.  Analysis of Genomic G + C Content, Codon Usage, Initiator Codon Context and Translation Termination Sites In Tetrahymena Thermophila , 1999, The Journal of eukaryotic microbiology.

[28]  M. Kuroda,et al.  The emergence and evolution of methicillin-resistant Staphylococcus aureus. , 2001, Trends in microbiology.

[29]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[30]  Lawrence A. David,et al.  Rapid evolutionary innovation during an Archaean genetic expansion , 2011, Nature.

[31]  V. Bryson,et al.  Evolving Genes and Proteins. , 1965, Science.

[32]  M. A. El Hassan,et al.  Propeller-twisting of base-pairs and the conformational mobility of dinucleotide steps in DNA. , 1996, Journal of molecular biology.

[33]  V. Moulton,et al.  Bounding the Number of Hybridisation Events for a Consistent Evolutionary History , 2005, Journal of mathematical biology.

[34]  G. B. Golding,et al.  The fate of laterally transferred genes: life in the fast lane to adaptation or death. , 2006, Genome research.

[35]  P. Forterre,et al.  A hidden reservoir of integrative elements is the major source of recently acquired foreign genes and ORFans in archaeal and bacterial genomes , 2009, Genome Biology.

[36]  Luay Nakhleh,et al.  Confounding Factors in HGT Detection: Statistical Error, Coalescent Effects, and Multiple Solutions , 2007, J. Comput. Biol..

[37]  Alain Giron,et al.  Detection and characterization of horizontal transfers in prokaryotes using genomic signature , 2005, Nucleic acids research.

[38]  M. Ragan On surrogate methods for detecting lateral gene transfer. , 2001, FEMS microbiology letters.

[39]  É. Tannier,et al.  The Inference of Gene Trees with Species Trees , 2013, Systematic biology.

[40]  W. Doolittle,et al.  Frequent Recombination in a Saltern Population of Halorubrum , 2004, Science.

[41]  Timothy J. Harlow,et al.  Highways of gene sharing in prokaryotes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Weilong Hao,et al.  Inferring Bacterial Genome Flux While Considering Truncated Genes , 2010, Genetics.

[43]  H. Matsuda,et al.  Biased biological functions of horizontally transferred genes in prokaryotic genomes , 2004, Nature Genetics.

[44]  Jon S. Robertson,et al.  Azospirillum Genomes Reveal Transition of Bacteria from Aquatic to Terrestrial Environments , 2011, PLoS genetics.

[45]  J. Lederberg,et al.  GENETIC EXCHANGE IN SALMONELLA , 1952, Journal of bacteriology.

[46]  P H Sneath,et al.  Genetic transfer and bacterial taxonomy. , 1970, Bacteriological reviews.

[47]  Ziheng Yang,et al.  INDELible: A Flexible Simulator of Biological Sequence Evolution , 2009, Molecular biology and evolution.

[48]  Manuel Gil,et al.  Who watches the watchmen? An appraisal of benchmarks for multiple sequence alignment. , 2012, Methods in molecular biology.

[49]  Georgios S. Vernikos,et al.  Resolving the structural features of genomic islands: a machine learning approach. , 2008, Genome research.

[50]  Tao Jiang,et al.  On the Complexity of Comparing Evolutionary Trees , 1996, Discret. Appl. Math..

[51]  Manolo Gouy,et al.  Detecting lateral gene transfers by statistical reconciliation of phylogenetic forests , 2010, BMC Bioinformatics.

[52]  F. Blattner,et al.  Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Robert L Charlebois,et al.  Ancient lateral gene transfer in the evolution of Bdellovibrio bacteriovorus. , 2006, Trends in microbiology.

[54]  Ron Shamir,et al.  Detecting Highways of Horizontal Gene Transfer , 2010, RECOMB-CG.

[55]  Joel Sjöstrand,et al.  A Bayesian method for analyzing lateral gene transfer. , 2014, Systematic biology.

[56]  Fiona S. L. Brinkman,et al.  Detecting genomic islands using bioinformatics approaches , 2010, Nature Reviews Microbiology.

[57]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[58]  Xieping Gao,et al.  Towards a Better Detection of Horizontally Transferred Genes by Combining Unusual Properties Effectively , 2012, PloS one.

[59]  F. Griffith The Significance of Pneumococcal Types , 1928, Journal of Hygiene.

[60]  P. Jagtap,et al.  A Predator Unmasked: Life Cycle of Bdellovibrio bacteriovorus from a Genomic Perspective , 2004, Science.

[61]  Antonio Lazcano,et al.  Comparative Analysis of Methodologies for the Detection of Horizontally Transferred Genes: A Reassessment of First-Order Markov Models , 2005, Silico Biol..

[62]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[63]  B. Boussau,et al.  Efficient Exploration of the Space of Reconciled Gene Trees , 2013, Systematic biology.

[64]  L. Pauling,et al.  Evolutionary Divergence and Convergence in Proteins , 1965 .

[65]  Georgios S. Vernikos,et al.  Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands , 2006, Bioinform..

[66]  Sean D. Hooper,et al.  Detection of Genes with Atypical Nucleotide Sequence in Microbial Genomes , 2002, Journal of Molecular Evolution.

[67]  Gaston H. Gonnet,et al.  DLIGHT - Lateral Gene Transfer Detection Using Pairwise Evolutionary Distances in a Statistical Framework , 2008, RECOMB.

[68]  J. Gogarten,et al.  The power of phylogenetic approaches to detect horizontally transferred genes , 2007, BMC Evolutionary Biology.

[69]  N. Moran,et al.  Functional Convergence in Reduced Genomes of Bacterial Symbionts Spanning 200 My of Evolution , 2010, Genome biology and evolution.

[70]  Hanspeter Herzel,et al.  10-11 bp periodicities in complete genomes reflect protein structure and DNA folding , 1999, Bioinform..

[71]  N. Moran,et al.  Lateral Transfer of Genes from Fungi Underlies Carotenoid Production in Aphids , 2010, Science.

[72]  Joshua Lederberg,et al.  Gene Recombination in the Bacterium Escherichia coli , 1947, Journal of bacteriology.

[73]  Lutz Hamel,et al.  Visualization of the phylogenetic content of five genomes using dekapentagonal maps , 2004, Genome Biology.

[74]  Aristotelis Tsirigos,et al.  A new computational method for the detection of horizontal gene transfer events , 2005, Nucleic acids research.

[75]  N. Zeh,et al.  Supertrees Based on the Subtree Prune-and-Regraft Distance , 2014, Systematic biology.

[76]  R. Ornstein,et al.  An optimized potential function for the calculation of nucleic acid interaction energies I. Base stacking , 1978, Biopolymers.

[77]  Ron Shamir,et al.  Systematic inference of highways of horizontal gene transfer in prokaryotes , 2013, Bioinform..

[78]  Manolis Kellis,et al.  Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss , 2012, Bioinform..

[79]  Peter J Bickel,et al.  Quantitative exploration of the occurrence of lateral gene transfer by using nitrogen fixation genes as a case study. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[80]  H. Ochman,et al.  Amelioration of Bacterial Genomes: Rates of Change and Exchange , 1997, Journal of Molecular Evolution.

[81]  Luay Nakhleh,et al.  RIATA-HGT: A Fast and Accurate Heuristic for Reconstructing Horizontal Gene Transfer , 2005, COCOON.

[82]  L. Koski,et al.  The Closest BLAST Hit Is Often Not the Nearest Neighbor , 2001, Journal of Molecular Evolution.

[83]  Miklós Csürös,et al.  Ancestral Reconstruction by Asymmetric Wagner Parsimony over Continuous Characters and Squared Parsimony over Distributions , 2008, RECOMB-CG.

[84]  S Guindon,et al.  Intragenomic base content variation is a potential source of biases when searching for horizontally transferred genes. , 2001, Molecular biology and evolution.

[85]  Christopher G. Dowson,et al.  Barriers to Genetic Exchange between Bacterial Species: Streptococcus pneumoniae Transformation , 2000, Journal of bacteriology.

[86]  Patrick Deschavanne,et al.  A Benchmark of Parametric Methods for Horizontal Transfers Detection , 2010, PloS one.

[87]  J. McInerney,et al.  A Pluralistic Account of Homology: Adapting the Models to the Data , 2013, Molecular biology and evolution.

[88]  Eugene Goltsman,et al.  Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. , 2006, Genome research.

[89]  G. Gonnet,et al.  ALF—A Simulation Framework for Genome Evolution , 2011, Molecular biology and evolution.

[90]  D. Falush,et al.  Inference of Bacterial Microevolution Using Multilocus Sequence Data , 2007, Genetics.

[91]  Sophie S Abby,et al.  Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations , 2012, Proceedings of the National Academy of Sciences.

[92]  Zhandong Liu,et al.  Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples , 2008, BMC Genomics.

[93]  N. Galtier A model of horizontal gene transfer and the bacterial phylogeny problem. , 2007, Systematic biology.

[94]  Nick Goldman,et al.  PhyloSim - Monte Carlo simulation of sequence evolution in the R statistical computing environment , 2011, BMC Bioinformatics.

[95]  Ron Shamir,et al.  Detecting Highways of Horizontal Gene Transfer , 2011, J. Comput. Biol..

[96]  S. Karlin,et al.  Dinucleotide relative abundance extremes: a genomic signature. , 1995, Trends in genetics : TIG.

[97]  D. Eisenberg,et al.  Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Michael T. Hallett,et al.  Efficient algorithms for lateral gene transfer problems , 2001, RECOMB.

[99]  Maria Poptsova Testing phylogenetic methods to identify horizontal gene transfer. , 2009, Methods in molecular biology.

[100]  Cédric Chauve,et al.  An Efficient Method for Exploring the Space of Gene Tree/Species Tree Reconciliations in a Probabilistic Framework , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[101]  D. Hartl,et al.  Inference of horizontal genetic transfer from molecular data: an approach using the bootstrap. , 1992, Genetics.

[102]  Howard Ochman,et al.  Reconciling the many faces of lateral gene transfer. , 2002, Trends in microbiology.

[103]  Glenn Hickey,et al.  SPR Distance Computation for Unrooted Trees , 2008, Evolutionary bioinformatics online.

[104]  Rajeev K. Azad,et al.  Towards more robust methods of alien gene detection , 2011, Nucleic acids research.

[105]  Rajeev K. Azad,et al.  Use of Artificial Genomes in Assessing Methods for Atypical Gene Detection , 2005, PLoS Comput. Biol..

[106]  N. Moran,et al.  From Gene Trees to Organismal Phylogeny in Prokaryotes:The Case of the γ-Proteobacteria , 2003, PLoS biology.

[107]  István Miklós,et al.  Streamlining and Large Ancestral Genomes in Archaea Inferred with a Phylogenetic Birth-and-Death Model , 2009, Molecular biology and evolution.