A Solution to the 2/3 Conjecture

We prove a vertex domination conjecture of Erdos, Faudree, Gould, Gyarfas, Rousseau, and Schelp that for every $n$-vertex complete graph with edges colored using three colors there exists a set of at most three vertices which have at least 2n/3 neighbors in one of the colors. Our proof makes extensive use of the ideas presented in [D. Kral' et al., A new bound for the 2/3 conjecture, Combin. Probab. Comput. 22 (2013), pp. 384--393].

[1]  Paul Erdös,et al.  Ramsey-type theorems , 1989, Discret. Appl. Math..

[2]  VICTOR FALGAS-RAVRY,et al.  Applications of the Semi-Definite Method to the Turán Density Problem for 3-Graphs , 2013, Comb. Probab. Comput..

[3]  Richard H. Schelp,et al.  Domination in colored complete graphs , 1989, J. Graph Theory.

[4]  Rahil Baber,et al.  Tur\'an densities of hypercubes , 2012 .

[5]  Alexander A. Razborov,et al.  Flag algebras , 2007, Journal of Symbolic Logic.

[6]  John M. Talbot,et al.  Hypergraphs Do Jump , 2010, Combinatorics, Probability and Computing.

[7]  John M. Talbot,et al.  New Turán Densities for 3-Graphs , 2012, Electron. J. Comb..

[8]  Alexander A. Razborov,et al.  On 3-Hypergraphs with Forbidden 4-Vertex Configurations , 2010, SIAM J. Discret. Math..

[9]  R. Baber,et al.  Some results in extremal combinatorics , 2011 .

[10]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[11]  Jan Hladký,et al.  Counting flags in triangle-free digraphs , 2009, Electron. Notes Discret. Math..