Development of a highly specific and sensitive VHH-based sandwich immunoassay for the detection of the SARS-CoV-2 nucleoprotein

[1]  E. Goldman,et al.  Single-Domain Antibodies for the Detection of SARS-CoV-2 Nucleocapsid Protein , 2021, Analytical chemistry.

[2]  T. Cokelaer,et al.  COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters , 2021, Science Translational Medicine.

[3]  J. Jaubert,et al.  The B1.351 and P.1 variants extend SARS-CoV-2 host range to mice , 2021, bioRxiv.

[4]  A. Sigal,et al.  Sixteen novel lineages of SARS-CoV-2 in South Africa , 2021, Nature Medicine.

[5]  M. Biggerstaff,et al.  Emergence of SARS-CoV-2 B.1.1.7 Lineage — United States, December 29, 2020–January 12, 2021 , 2021, MMWR. Morbidity and mortality weekly report.

[6]  Jonathan L. Schmid-Burgk,et al.  COVID-19 Bibliometrics 8 th – 14 th February 2021 , 2021 .

[7]  G. Leung,et al.  Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020 , 2021, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[8]  D. Schneidman-Duhovny,et al.  Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2 , 2020, Science.

[9]  G. Gao,et al.  Structures of the SARS‐CoV‐2 nucleocapsid and their perspectives for drug design , 2020, The EMBO journal.

[10]  T. Gibson,et al.  Ultra-sensitive Serial Profiling of SARS-CoV-2 Antigens and Antibodies in Plasma to Understand Disease Progression in COVID-19 Patients with Severe Disease , 2020, Clinical chemistry.

[11]  Y. Yazdanpanah,et al.  A comparison of four serological assays for detecting anti–SARS-CoV-2 antibodies in human serum samples from different populations , 2020, Science Translational Medicine.

[12]  D. Brody,et al.  High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme , 2020, Scientific Reports.

[13]  R. Owens,et al.  Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2 , 2020, Nature Structural & Molecular Biology.

[14]  Lisa E. Gralinski,et al.  SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract , 2020, Cell.

[15]  K. Nadeau,et al.  A highly sensitive bioluminescent method for measuring allergen‐specific IgE in microliter samples , 2020, Allergy.

[16]  Jiajia Xie,et al.  Biochemical characterization of SARS-CoV-2 nucleocapsid protein , 2020, Biochemical and Biophysical Research Communications.

[17]  Q. Jin,et al.  Humanized single domain antibodies neutralize SARS-CoV-2 by targeting the spike receptor binding domain , 2020, Nature Communications.

[18]  Evzen Boura,et al.  Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein , 2020, bioRxiv.

[19]  N. Callewaert,et al.  Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies , 2020, Cell.

[20]  Xavier Duval,et al.  Clinical and virological data of the first cases of COVID-19 in Europe: a case series , 2020, The Lancet Infectious Diseases.

[21]  Fabian J Theis,et al.  SARS-CoV-2 Entry Genes Are Most Highly Expressed in Nasal Goblet and Ciliated Cells within Human Airways , 2020, Nature Medicine.

[22]  Zhicong Yang,et al.  The SARS-CoV-2 outbreak: What we know , 2020, International Journal of Infectious Diseases.

[23]  Lei Liu,et al.  A preliminary study on serological assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 238 admitted hospital patients , 2020, Microbes and Infection.

[24]  Jie Zheng,et al.  Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments , 2019, Nature Methods.

[25]  Jinquan Luo,et al.  Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin , 2018, Science.

[26]  P. Lafaye,et al.  Use of camel single-domain antibodies for the diagnosis and treatment of zoonotic diseases , 2018, Comparative Immunology, Microbiology & Infectious Diseases.

[27]  Ulrich Rothbauer,et al.  Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy , 2017, Front. Immunol..

[28]  C. Duyckaerts,et al.  Camelid single-domain antibodies: A versatile tool for in vivo imaging of extracellular and intracellular brain targets. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[29]  Stevenn Volant,et al.  MEMHDX: an interactive tool to expedite the statistical validation and visualization of large HDX-MS datasets , 2016, Bioinform..

[30]  D. Falzarano,et al.  SARS and MERS: recent insights into emerging coronaviruses , 2016, Nature Reviews Microbiology.

[31]  G. Gao,et al.  Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses , 2016, Trends in Microbiology.

[32]  François Ferron,et al.  Structural characterization of the N‐terminal part of the MERS‐CoV nucleocapsid by X‐ray diffraction and small‐angle X‐ray scattering , 2016, Acta crystallographica. Section D, Structural biology.

[33]  B. Raynal,et al.  Quality assessment and optimization of purified protein samples: why and how? , 2014, Microbial Cell Factories.

[34]  H. Ploegh,et al.  Intracellular Expression of Camelid Single-Domain Antibodies Specific for Influenza Virus Nucleoprotein Uncovers Distinct Features of Its Nuclear Localization , 2014, Journal of Virology.

[35]  Alastair D G Lawson,et al.  Functional inhibition of β-catenin-mediatedWnt signaling by intracellular VHHantibodies , 2014, mAbs.

[36]  B. Fielding,et al.  The Coronavirus Nucleocapsid Is a Multifunctional Protein , 2014, Viruses.

[37]  J. Vandekerckhove,et al.  Stratifying fascin and cortactin function in invadopodium formation using inhibitory nanobodies and targeted subcellular delocalization , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[38]  A. Meola,et al.  An alpaca nanobody inhibits hepatitis C virus entry and cell‐to‐cell transmission , 2013, Hepatology.

[39]  J. Bourgeois,et al.  Cell‐penetrating anti‐GFAP VHH and corresponding fluorescent fusion protein VHH‐GFP spontaneously cross the blood‐brain barrier and specifically recognize astrocytes: application to brain imaging , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[40]  R. Weiss,et al.  Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization , 2012, The Journal of experimental medicine.

[41]  B. Schepens,et al.  Nanobodies®: new ammunition to battle viruses. , 2011, Antiviral research.

[42]  R. Weiss,et al.  Llama-Derived Single Domain Antibodies to Build Multivalent, Superpotent and Broadened Neutralizing Anti-Viral Molecules , 2011, PloS one.

[43]  Chi Zhang,et al.  Pre-expression of a sulfhydryl oxidase significantly increases the yields of eukaryotic disulfide bond containing proteins expressed in the cytoplasm of E.coli , 2011, Microbial cell factories.

[44]  S. Muyldermans,et al.  In vitro antiviral activity of single domain antibody fragments against poliovirus. , 2010, Antiviral research.

[45]  Charles Duyckaerts,et al.  Llama VHH antibody fragments against GFAP: better diffusion in fixed tissues than classical monoclonal antibodies , 2009, Acta Neuropathologica.

[46]  C. Duyckaerts,et al.  Single-domain antibodies recognize selectively small oligomeric forms of amyloid beta, prevent Abeta-induced neurotoxicity and inhibit fibril formation. , 2009, Molecular immunology.

[47]  R. Weiss,et al.  Llama Antibody Fragments with Cross-Subtype Human Immunodeficiency Virus Type 1 (HIV-1)-Neutralizing Properties and High Affinity for HIV-1 gp120 , 2008, Journal of Virology.

[48]  P. Güntert,et al.  Solution Structure of the C-terminal Dimerization Domain of SARS Coronavirus Nucleocapsid Protein Solved by the SAIL-NMR Method , 2007, Journal of Molecular Biology.

[49]  H. de Haard,et al.  Properties, production, and applications of camelid single-domain antibody fragments , 2007, Applied Microbiology and Biotechnology.

[50]  C. Hsiao,et al.  Structure of the SARS Coronavirus Nucleocapsid Protein RNA-binding Dimerization Domain Suggests a Mechanism for Helical Packaging of Viral RNA , 2007, Journal of Molecular Biology.

[51]  Raymond C. Stevens,et al.  Ribonucleocapsid Formation of Severe Acute Respiratory Syndrome Coronavirus through Molecular Action of the N-Terminal Domain of N Protein , 2007, Journal of Virology.

[52]  Lennart Hammarstrom,et al.  Reduction in morbidity of rotavirus induced diarrhoea in mice by yeast produced monovalent llama-derived antibody fragments. , 2006, Vaccine.

[53]  V. Chow,et al.  The Nucleocapsid Protein of Severe Acute Respiratory Syndrome-Coronavirus Inhibits the Activity of Cyclin-Cyclin-dependent Kinase Complex and Blocks S Phase Progression in Mammalian Cells , 2006, Journal of Biological Chemistry.

[54]  I. Yu,et al.  Recombinant Severe Acute Respiratory Syndrome (SARS) Coronavirus Nucleocapsid Protein Forms a Dimer through Its C-terminal Domain , 2005, Journal of Biological Chemistry.

[55]  P. Schuck,et al.  Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. , 2000, Biophysical journal.

[56]  S. Muyldermans,et al.  Naturally occurring antibodies devoid of light chains , 1993, Nature.