In Situ Patterning of Organic Single‐Crystalline Nanoribbons on a SiO2 Surface for the Fabrication of Various Architectures and High‐Quality Transistors

[1]  John A. Rogers,et al.  Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates , 2004 .

[2]  V. M. Pudalov,et al.  Single-crystal organic field effect transistors with the hole mobility ∼8 cm2/V s , 2003 .

[3]  T. M. Klapwijk,et al.  Field-effect transistors on tetracene single crystals , 2003 .

[4]  J. Rogers,et al.  Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals , 2004, Science.

[5]  B. Batlogg,et al.  Field-induced charge transport at the surface of pentacene single crystals: A method to study charge dynamics of two-dimensional electron systems in organic crystals , 2003 .

[6]  Zhenan Bao,et al.  Organic field‐effect transistors with high mobility based on copper phthalocyanine , 1996 .

[7]  V. R. Raju,et al.  Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T. Okuda,et al.  Copper-Phthalocyanine Field-Effect Transistor with a Low Driving Voltage , 2004 .

[9]  Qingxin Tang,et al.  Low Threshold Voltage Transistors Based on Individual Single‐Crystalline Submicrometer‐Sized Ribbons of Copper Phthalocyanine , 2006 .

[10]  J. Shi,et al.  Phthalocyanine Composites as High‐Mobility Semiconductors for Organic Thin‐Film Transistors , 2005 .

[11]  George G. Malliaras,et al.  An Organic Electronics Primer , 2005 .

[12]  Howard E. Katz,et al.  α,ω-Dihexylquaterthiophene: A Second Thin Film Single-Crystal Organic Semiconductor , 1998 .

[13]  Michael A. Haase,et al.  Recent Progress in Organic Electronics: Materials, Devices, and Processes , 2004 .

[14]  Henning Sirringhaus,et al.  Device Physics of Solution‐Processed Organic Field‐Effect Transistors , 2005 .

[15]  J. Rogers,et al.  A printable form of silicon for high performance thin film transistors on plastic substrates , 2004 .

[16]  V. Podzorov,et al.  Organic single-crystal field-effect transistors , 2004 .

[17]  J. Brédas,et al.  Organic Electronics and Photonics , 2002 .

[18]  C. Kloc,et al.  Field effect studies on rubrene and impurities of rubrene , 2006 .

[19]  Daoben Zhu,et al.  Advances in organic field-effect transistors , 2005 .

[20]  I. Mcculloch Rolling out organic electronics , 2005, Nature materials.

[21]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[22]  C. Lieber,et al.  Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems , 2003, Science.

[23]  Gilles Horowitz,et al.  Organic Field‐Effect Transistors , 1998 .

[24]  J. Aizenberg,et al.  Patterned growth of large oriented organic semiconductor single crystals on self-assembled monolayer templates. , 2005, Journal of the American Chemical Society.

[25]  Theo Siegrist,et al.  Synthesis, crystal structure, and transistor performance of tetracene derivatives. , 2004, Journal of the American Chemical Society.

[26]  G. Horowitz,et al.  Growth and Characterization of Sexithiophene Single Crystals , 1995 .

[27]  Theo Siegrist,et al.  Physical vapor growth of organic semiconductors , 1998 .

[28]  C. Brown,et al.  Crystal structure of ?-copper phthalocyanine , 1968 .

[29]  Elsa Reichmanis,et al.  Plastic electronic devices: From materials design to device applications , 2005, Bell Labs Technical Journal.

[30]  J. Robertson 136. An X-ray study of the structure of the phthalocyanines. Part I. The metal-free, nickel, copper, and platinum compounds , 1935 .

[31]  Theo Siegrist,et al.  Single-crystal field-effect transistors based on copper phthalocyanine , 2005 .

[32]  C. Rovira,et al.  High mobility of dithiophene-tetrathiafulvalene single-crystal organic field effect transistors. , 2004, Journal of the American Chemical Society.

[33]  V. M. Pudalov,et al.  Field-effect transistors on rubrene single crystals with parylene gate insulator , 2003 .

[34]  Tobin J. Marks,et al.  Gate Dielectrics for Organic Field‐Effect Transistors: New Opportunities for Organic Electronics , 2005 .

[35]  Donhee Ham,et al.  Nanotechnology: High-speed integrated nanowire circuits , 2005, Nature.

[36]  N. S. Sariciftci,et al.  Molecules as bipolar conductors , 2003, Nature materials.