Microscopic physical basis of the poromechanical behavior of cement-based materials

Contrary to other porous materials such as sandstones, bricks or porous glas, the inter-atomic bonding continuity of cement-based materials is far from obvious. When scrutinized at very microscopic level, continuity of the ionic-covalent bonding in the solid phase is almost everywhere interrupted by water molecules or liquid water films of variable thickness. Yet, concrete and cement pastes are able to withstand stresses of the same magnitude as rocks. The purpose of this paper to explore the possible reasons for such a high cohesion, in terms of inter-particle forces using general arguments and molecular simulation computations includingab initio quantum chemical methods applied toC-S-H. As it will be discussed, molecular simulation studies provide strong arguments for predicting that short-and medium-range attractive electrostatic forces are the essential components of the cohesion, ofC-S-H with, at short distance (sub-nm), a significant iono-covalent contribution involving strongly localized calcium ions and water molecules and, at larger distance (a few nm), ionic correlation forces involving hydrated and mobile calcium ions in liquid water films. Only a marginal contribution is expected from van der Waals attraction whereas capillary forces might contribute at a level comparable to that of correlation forces in unsaturated conditions. The parallel with clay-based earthen construction materials is part of the clue of this rationale.RésuméContrairement à d'autres matériaux poreux comme les grès, les briques ou certains verres, les matériaux cimentaires ne possèdent pas un schéma simple de liaisons interatomiques. La continuité du réseau de liaisons iono-covalentes y est presque partout interrompue par des molécules d'eau ou des films d'eau d'épaisseur variable. Pourtant, le béton et les pâtes de ciment sont capables de supporter des contraintes du même ordre de grandeur que celles que supportent les roches. Nous avons analysé, les mécanismes de cette cohésion élevée en termes de forces interparticulaires, d'abord à l'aide d'arguments généraux, puis à l'aide de calculs de modélisation moléculaire, y compris des calculs de chimie quantique ab initio, appliqués aux C-S-H. Les résultats fournissent des arguments sérieux en faveur d'une cohésion principalement de type électrostatique avec, à très courte distance (sub-nm), une contribution iono-covalente impliquant des ions calcium et des molécules d'eau fortement localisées et, à plus grande distance (quelques nm), des forces de corrélation ionique dues à des ions calcium mobiles au sein de films d'eau liquide. Les forces de van der Waals n'auraient qu'une contribution marginale tandis que les forces capillaires pourraient avoir, en conditions fortement insaturées, une contribution comparable à celle des forces de corrélation ionique. La comparaison avec les argiles fournit un fil conducteur utile à cette analyse.

[1]  E. Verwey,et al.  Theory of the stability of lyophobic colloids. , 1955, The Journal of physical and colloid chemistry.

[2]  K. Norrish,et al.  The swelling of montmorillonite , 1954 .

[3]  T. C. Powers,et al.  Structure and Physical Properties of Hardened Portland Cement Paste , 1958 .

[4]  K. Norrish Low-Angle X-Ray Diffraction Studies of the Swelling of Montmorillonite and Vermiculite , 1961 .

[5]  L. Aylmore,et al.  Domains and Quasi-Crystalline Regions in Clay Systems1 , 1971 .

[6]  H. Olphen An Introduction to Clay Colloid Chemistry , 1977 .

[7]  G. Lagaly,et al.  H. van Olphen: An Introduction to Clay Colloid Chemistry, 2nd Ed. John Wiley & Sons, New York, London, Sydney, Toronto 1977. 318 Seiten, Preis: £ 15.–, $ 25.– , 1978 .

[8]  S. Mindess,et al.  Creep and drying shrinkage of calcium silicate pastes III. A hypothesis of irreversible strains , 1979 .

[9]  Richard M. Pashley,et al.  DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties , 1981 .

[10]  Richard M. Pashley,et al.  Hydration forces between mica surfaces in aqueous electrolyte solutions , 1981 .

[11]  S. A. Hamid The crystal structure of the 11Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5] · 1H2O , 1981 .

[12]  F H Wittman,et al.  Fundamental research on creep and shrinkage of concrete , 1982 .

[13]  L. Schramm,et al.  Influence of Exchangeable Cation Composition on the Size and Shape of Montmorillonite Particles in Dilute Suspension , 1982 .

[14]  P. F. Low,et al.  Direct measurement of the relation between interlayer force and interlayer distance in the swelling of montmorillonite , 1983 .

[15]  S. Marčelja,et al.  Correlation and image charge effects in electric double layers , 1984 .

[16]  H. Wennerström,et al.  Electrical double layer forces: a Monte Carlo study , 1984 .

[17]  J. Israelachvili Intermolecular and surface forces , 1985 .

[18]  S. Marčelja,et al.  Double-layer interaction in the primitive model and the corresponding Poisson-Boltzmann description , 1986 .

[19]  P. F. Low Structural component of the swelling pressure of clays , 1987 .

[20]  S. Marčelja,et al.  Attractive double-layer interactions between calcium clay particles , 1988 .

[21]  S. Marčelja,et al.  Double-layer ion correlation forces restrict calcium-clay swelling , 1988 .

[22]  S. Marčelja,et al.  A theoretical and experimental study of forces between charged mica surfaces in aqueous CaCl2 solutions , 1990 .

[23]  D. Tessier Behaviour and microstructure of clay minerals. , 1990 .

[24]  G. Sposito The Diffuse-Ion Swarm Near Smectite Particles Suspended in 1:1 Electrolyte Solutions: Modified Gouy-Chapman Theory and Quasicrystal Formation , 1992 .

[25]  J. Quirk Interparticle Forces: A Basis for the Interpretation of Soil Physical Behavior , 1994 .

[26]  Cesare Pisani,et al.  Quantum-Mechanical Ab-initio Calculation of the Properties of Crystalline Materials , 1996 .

[27]  Julian D. Gale,et al.  Empirical potential derivation for ionic materials , 1996 .

[28]  A Scaling Model of the Microstructural Evolution in C3S/C-S-H Pastes , 1996 .

[29]  Zhengkui Xu,et al.  Mesostructure of calcium silicate hydrate (C-S-H) gels in Portland cement paste : Short-range ordering, nanocrystallinity, and local compositional order , 1997 .

[30]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[31]  D. Bentz Three-Dimensional Computer Simulation of Portland Cement Hydration and Microstructure Development , 1997 .

[32]  R. Pellenq,et al.  Electrostatic Attraction between Two Charged Surfaces: A (N,V,T) Monte Carlo Simulation , 1997 .

[33]  S. Hull,et al.  P-V equation of state of portlandite, Ca(OH)2, from powder neutron diffraction data , 1997 .

[34]  F. Adenot,et al.  Study of the structural properties of the CSH(I) BY molecular dynamics simulation , 1997 .

[35]  R. Harba,et al.  Surface topography and mechanical properties of smectite films , 1997 .

[36]  Franz-Josef Ulm,et al.  Microprestress-Solidification Theory for Concrete Creep. I: Aging and Drying Effects , 1997 .

[37]  P. Colombet,et al.  Nuclear magnetic resonance spectroscopy of cement-based materials , 1998 .

[38]  E. Lesniewska,et al.  Direct observation of the growth of calcium silicate hydrate on alite and silica surfaces by atomic force microscopy , 1998 .

[39]  André Nonat,et al.  Electrokinetic Properties which Control the Coagulation of Silicate Cement Suspensions during Early Age Hydration , 1998 .

[40]  A converse theorem for Dirichlet series with poles , 1998 .

[41]  Eric Lesniewska,et al.  Observation directe de la croissance d'hydrosilicate de calcium sur des surfaces d'alité et de silice par microscopie à force atomique , 1998 .

[42]  J. Chappuis A new model for a better understanding of the cohesion of hardened hydraulic materials , 1999 .

[43]  I. Richardson The nature of C-S-H in hardened cements , 1999 .

[44]  Hamlin M. Jennings,et al.  A model for the microstructure of calcium silicate hydrate in cement paste , 2000 .

[45]  J. M. Martínez-Duart,et al.  Development and characterization of porous silicon based photodiodes , 2000 .

[46]  R. Pellenq,et al.  Electrostatic Attraction and/or Repulsion Between Charged Colloids: A (NVT) Monte-Carlo Study , 2000 .

[47]  E. A. Lindgren,et al.  Ultrasonic determination of elastic moduli in cement during hydrostatic loading to 1 GPa , 2000 .

[48]  S. Merlino,et al.  The real structure of tobermorite 11A: normal and anomalous forms, OD character and polytypic modifications , 2001 .

[49]  A transmission electron microscopy study of interfaces and matrix homogeneity in ultra-high-performance cement-based materials , 2001 .

[50]  E. Lesniewska,et al.  Investigation by atomic force microscopy of forces at the origin of cement cohesion. , 2001, Ultramicroscopy.

[51]  A. Nonat,et al.  Zeta-Potential Study of Calcium Silicate Hydrates Interacting with Alkaline Cations , 2001 .

[52]  Denis Damidot,et al.  Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker , 2001 .

[53]  U. Raviv,et al.  Fluidity of Bound Hydration Layers , 2002, Science.

[54]  Andrey G. Kalinichev,et al.  Molecular Dynamics Modeling of Chloride Binding to the Surfaces of Calcium Hydroxide, Hydrated Calcium Aluminate, and Calcium Silicate Phases , 2002 .

[55]  S. Cho,et al.  Effect of Sand Ration on the Elastic Modulus of Self-Compacting Concrete , 2002 .

[56]  A. Gmira Etude texturale et thermodynamique d'hydrates modèles du ciment , 2003 .