On the number of correctable errors of the Feng-Rao decoding algorithm for AG codes

In this correspondence we give geometric codes on one of the curves of Garcia-Stichtenoth (1995) with the property that the true distances are bigger than Feng-Rao distances. Moreover, an example for which the Feng-Rao algorithm cannot correct more than [(d/sub FR/-1)/2]+1(<[(d/sub true/-1)/2]) errors is given.

[1]  H. Stichtenoth,et al.  A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .

[2]  Dirk Ehrhard,et al.  Achieving the designed error capacity in decoding algebraic-geometric codes , 1993, IEEE Trans. Inf. Theory.

[3]  Hao Chen,et al.  Codes on Garcia-Stichtenoth Curves with True Distance Greater Than Feng-Rao Distance , 1999, IEEE Trans. Inf. Theory.

[4]  Ruud Pellikaan,et al.  On the gonality of curves, abundant codes and decoding , 1992 .

[5]  A.N. Skorobogatov,et al.  On the decoding of algebraic-geometric codes , 1990, IEEE Trans. Inf. Theory.

[6]  Tom Høholdt,et al.  An explicit construction of a sequence of codes attaining the Tsfasman-Vladut-Zink bound: The first steps , 1997, IEEE Trans. Inf. Theory.

[7]  Tom Høholdt,et al.  On the number of correctable errors for some AG-codes , 1993, IEEE Trans. Inf. Theory.

[8]  Ruud Pellikaan,et al.  On the decoding of algebraic-geometric codes , 1995, IEEE Trans. Inf. Theory.

[9]  S. Lang,et al.  NUMBER OF POINTS OF VARIETIES IN FINITE FIELDS. , 1954 .

[10]  T. R. N. Rao,et al.  Decoding algebraic-geometric codes up to the designed minimum distance , 1993, IEEE Trans. Inf. Theory.

[11]  Carlos Munuera,et al.  On the generalized Hamming weights of geometric-Goppa codes , 1994, IEEE Trans. Inf. Theory.

[12]  Tom Høholdt,et al.  Construction and decoding of a class of algebraic geometry codes , 1989, IEEE Trans. Inf. Theory.

[13]  Ruud Pellikaan,et al.  The minimum distance of codes in an array coming from telescopic semigroups , 1995, IEEE Trans. Inf. Theory.