Space-Optimal Time-Efficient Silent Self-Stabilizing Constructions of Constrained Spanning Trees

Self-stabilizing algorithms are distributed algorithms supporting transient failures. Starting from any configuration, they allow the system to detect whether the actual configuration is legal, and, if not, they allow the system to eventually reach a legal configuration. In the context of network computing, it is known that, for every task, there is a self-stabilizing algorithm solving that task, with optimal space-complexity, but converging in an exponential number of rounds. On the other hand, it is also known that, for every task, there is a self-stabilizing algorithm solving that task in a linear number of rounds, but with large space-complexity. It is however not known whether for every task there exists a self-stabilizing algorithm that is simultaneously space-efficient and time-efficient. In this paper, we make a first attempt for answering the question of whether such an efficient algorithm exists for every task, by focussing on constrained spanning tree construction tasks. We present a general roadmap for the design of silent space-optimal self-stabilizing algorithms solving such tasks, converging in polynomially many rounds under the unfair scheduler. By applying our roadmap to the task of constructing minimum-weight spanning tree (MST), and to the task of constructing minimum-degree spanning tree (MDST), we provide algorithms that outperform previously known algorithms designed and optimized specifically for solving each of these two tasks.

[1]  Adrian Kosowski,et al.  A Self-stabilizing Algorithm for Finding a Spanning Tree in a Polynomial Number of Moves , 2005, PPAM.

[2]  Maria Gradinariu Potop-Butucaru,et al.  Memory space requirements for self-stabilizing leader election protocols , 1999, PODC '99.

[3]  David Peleg Informative Labeling Schemes for Graphs , 2000, MFCS.

[4]  Shlomi Dolev,et al.  SuperStabilizing protocols for dynamic distributed systems , 1995, PODC '95.

[5]  David S. Johnson,et al.  Some simplified polynomial complete problems , 1974 .

[6]  Tetz C. Huang,et al.  A self-stabilizing algorithm for the shortest path problem assuming read/write atomicity , 2005, J. Comput. Syst. Sci..

[7]  Stéphane Devismes,et al.  Light enabling snap-stabilization of fundamental protocols , 2009, TAAS.

[8]  Stephen Alstrup,et al.  Nearest Common Ancestors: A Survey and a New Algorithm for a Distributed Environment , 2004, Theory of Computing Systems.

[9]  Rakesh Kawatra A multiperiod degree constrained minimal spanning tree problem , 2002, Eur. J. Oper. Res..

[10]  Boaz Patt-Shamir,et al.  Time optimal self-stabilizing synchronization , 1993, STOC.

[11]  Edsger W. Dijkstra,et al.  Self-stabilizing systems in spite of distributed control , 1974, CACM.

[12]  Ajoy Kumar Datta,et al.  Self-stabilizing leader election in optimal space under an arbitrary scheduler , 2011, Theor. Comput. Sci..

[13]  Jayme Luiz Szwarcfiter,et al.  Hamilton Paths in Grid Graphs , 1982, SIAM J. Comput..

[14]  Toshimitsu Masuzawa,et al.  Fast and compact self stabilizing verification, computation, and fault detection of an MST , 2011, PODC.

[15]  Hasan Pirkul,et al.  Topological Design of Centralized Computer Networks , 1997 .

[16]  Maria Gradinariu Potop-Butucaru,et al.  Self-stabilizing minimum-degree spanning tree within one from the optimal degree , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[17]  Vincent Villain,et al.  The First Fully Polynomial Stabilizing Algorithm for BFS Tree Construction , 2011, OPODIS.

[18]  Shlomi Dolev,et al.  Self Stabilization , 2004, J. Aerosp. Comput. Inf. Commun..

[19]  Maria Gradinariu Potop-Butucaru,et al.  Fast Self-stabilizing Minimum Spanning Tree Construction - Using Compact Nearest Common Ancestor Labeling Scheme , 2010, DISC.

[20]  Maria Gradinariu Potop-Butucaru,et al.  A New Self-Stabilizing Minimum Spanning Tree Construction with Loop-Free Property , 2009, Comput. J..

[21]  Yehuda Afek,et al.  Self-stabilizing unidirectional network algorithms by power-supply , 1997, SODA '97.

[22]  Boaz Patt-Shamir,et al.  Self-stabilization by local checking and correction , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[23]  Shing-Tsaan Huang,et al.  A Self-Stabilizing Algorithm for Constructing Spanning Trees , 1991, Inf. Process. Lett..

[24]  Martin Fürer,et al.  Approximating the Minimum-Degree Steiner Tree to within One of Optimal , 1994, J. Algorithms.

[25]  Sébastien Tixeuil,et al.  Transient Fault Detectors , 1998, DISC.

[26]  Pierre Fraigniaud,et al.  Polynomial-Time Space-Optimal Silent Self-Stabilizing Minimum-Degree Spanning Tree Construction , 2014, ArXiv.

[27]  Subhash C. Narula,et al.  Degree-constrained minimum spanning tree , 1980, Comput. Oper. Res..

[28]  Shlomi Dolev,et al.  Memory requirements for silent stabilization , 1999, Acta Informatica.

[29]  David S. Johnson,et al.  Some simplified NP-complete problems , 1974, STOC '74.

[30]  Maria Gradinariu Potop-Butucaru,et al.  A New Self-stabilizing Minimum Spanning Tree Construction with Loop-Free Property , 2009, DISC.

[31]  Shay Kutten,et al.  Proof labeling schemes , 2005, PODC '05.

[32]  Amos Israeli,et al.  Self-stabilization of dynamic systems assuming only read/write atomicity , 1990, PODC '90.

[33]  Shay Kutten,et al.  Distributed verification of minimum spanning trees , 2007, Distributed Computing.

[34]  Lisa Higham,et al.  Self-Stabilizing Minimum Spanning Tree Construction on Message-Passing Networks , 2001, DISC.

[35]  Leonid A. Levin,et al.  Fast and lean self-stabilizing asynchronous protocols , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[36]  Yehuda Afek,et al.  Local stabilizer , 1997, PODC '97.

[37]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[38]  Pierre Fraigniaud,et al.  Local MST computation with short advice , 2007, SPAA.

[39]  Vaidyanathan Nagarajan Topological design of centralized computer networks , 1991 .

[40]  Alain Cournier A New Polynomial Silent Stabilizing Spanning-Tree Construction Algorithm , 2009, SIROCCO.

[41]  Boaz Patt-Shamir,et al.  On Proof-Labeling Schemes versus Silent Self-stabilizing Algorithms , 2014, SSS.

[42]  Anish Arora,et al.  Distributed Reset , 1994, IEEE Trans. Computers.

[43]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[44]  Shing-Tsaan Huang,et al.  Self-stabilizing depth-first token circulation on networks , 2005, Distributed Computing.

[45]  Nobuji Saito,et al.  NP-Completeness of the Hamiltonian Cycle Problem for Bipartite Graphs , 1980 .

[46]  Lélia Blin,et al.  A Self-Stabilizing Memory Efficient Algorithm for the Minimum Diameter Spanning Tree under an Omnipotent Daemon , 2015, 2015 IEEE International Parallel and Distributed Processing Symposium.

[47]  Shing-Tsaan Huang,et al.  A Self-Stabilizing Algorithm for Constructing Breadth-First Trees , 1992, Inf. Process. Lett..

[48]  Shlomi Dolev,et al.  Self-Stabilizing Depth-First Search , 1994, Inf. Process. Lett..

[49]  Maria Gradinariu Potop-Butucaru,et al.  Fast Self-Stabilizing Minimum Spanning Tree Construction , 2010, ArXiv.

[50]  R. Ravi,et al.  Approximation algorithms for finding low-degree subgraphs , 2004, Networks.

[51]  Moti Yung,et al.  Memory-Efficient Self Stabilizing Protocols for General Networks , 1990, WDAG.

[52]  Sandeep K. S. Gupta,et al.  Self-Stabilizing Protocol for Shortest Path Tree for Multi-cast Routing in Mobile Networks (Research Note) , 2000, Euro-Par.

[53]  E. F. Moore,et al.  Variable-length binary encodings , 1959 .

[54]  Jaroslav Nesetril,et al.  Otakar Boruvka on minimum spanning tree problem Translation of both the 1926 papers, comments, history , 2001, Discret. Math..

[55]  Sandeep K. S. Gupta,et al.  Self-stabilizing multicast protocols for ad hoc networks , 2003, J. Parallel Distributed Comput..

[56]  Moti Yung,et al.  The Local Detection Paradigm and Its Application to Self-Stabilization , 1997, Theor. Comput. Sci..

[57]  Bernard Chazelle,et al.  A minimum spanning tree algorithm with inverse-Ackermann type complexity , 2000, JACM.

[58]  Pierre Fraigniaud Approximation Algorithms for Minimum-Time Broadcast under the Vertex-Disjoint Paths Mode , 2001, ESA.

[59]  Colette Johnen Memory efficient, self-stabilizing algorithm to construct BFS spanning trees , 1997, PODC '97.

[60]  G Di Mambro THE IRIS PROJECT , 2002 .

[61]  Shay Kutten,et al.  Time Optimal Asynchronous Self-stabilizing Spanning Tree , 2007, DISC.

[62]  Pierre A. Humblet,et al.  A Distributed Algorithm for Minimum-Weight Spanning Trees , 1983, TOPL.