Ultraviolet photoelectron spectroscopy as a new method to determine energy gap values of molecular materials

Energy gap is one of the fundamental energetic characteristics of a material. In this paper a new method for the determination of the energy gap values in molecular materials from ultraviolet-photoelectron spectroscopy (UPS) is proposed. In a first part it is shown how UPS spectra are affected by intermolecular and intramolecular vibrations and polarizations. In a second part, from experimental data concerning radical phthalocyanines, and by comparison with results concerning non-radical phthalocyanines, fullerenes and polyacenes, it is established that the photoemission spectra give us information on the insulating or semiconducting behavior of these materials. In the case of undoped materials the energetic difference between the upper electron and the Fermi level allows us to determine the energy gap value. The UPS data are compared to those issued from other well known techniques. A limitation appears when extrinsic electronic levels move the Fermi level out of the middle of the gap.

[1]  G. Wertheim,et al.  Electronic structure of CsAu , 1979 .

[2]  J. Simon,et al.  Preparation and study of a lithium phthalocyanine radical: optical and magnetic properties , 1987 .

[3]  Johnson,et al.  Growth mode and electronic structure of the epitaxial C60(111)/GeS(001) interface. , 1994, Physical review. B, Condensed matter.

[4]  J. Simon,et al.  METALLOPHTHALOCYANINES. GAS SENSORS, RESISTORS AND FIELD EFFECT TRANSISTORS , 1998 .

[5]  W. Göpel,et al.  Growth and electronic properties of ultrathin lutetium–diphthalocyanine films studied by electron spectroscopy , 1991 .

[6]  R. B. Campbell,et al.  The crystal and molecular structure of pentacene , 1961 .

[7]  A. Goldmann,et al.  Ultraviolet Photoelectron Valence Band Studies on Phthalocyanine Compounds , 1977 .

[8]  K. Seki,et al.  Ultraviolet photoelectron spectra of C76 and KxC76 , 1992 .

[9]  M. I. Ferguson,et al.  Electrical conductivity studies of undoped solid films of C60/70 , 1991 .

[10]  W. Göpel,et al.  Doping effects in thin films of radical phthalocyanines: UPS and conductivity studies , 1993 .

[11]  S. Hüfner,et al.  X-Ray Photoelectron Valence Band Studies on Phthalocyanine Compounds , 1976 .

[12]  Alan J. Parker,et al.  Protic-dipolar aprotic solvent effects on rates of bimolecular reactions , 1969 .

[13]  L. Echegoyen,et al.  Reversible Fullerene Electrochemistry: Correlation with the HOMO-LUMO Energy Difference for C60, C70, C76, C78, and C84 , 1995 .

[14]  P. Petit,et al.  A new series of molecular semiconductors: phthalocyanine radicals , 1987 .

[15]  J. Simon,et al.  Electrical properties of rare earth bisphthalocyanine and bisnaphthalocyanine complexes , 1990 .

[16]  H. Yamakado,et al.  Photoelectron spectra of metallic conducting Pt-phthalocyanine radical salts , 1989 .

[17]  M. L'her,et al.  Electrochemical behaviour of lutetium diphthalocyanine in methylene chloride , 1983 .

[18]  J. Simon,et al.  Electrochromism of octaalkoxymethyl-substituted lutetium diphthalocyanine , 1987 .

[19]  K. Ohno,et al.  Selective Observation of Outermost Surface Layer during Epitaxial Growth by Penning-Ionization Electron Spectroscopy: Pentacene on Graphite , 1984 .

[20]  J. Brédas,et al.  Electronic structure of phthalocyanines : Theoretical investigation of the optical properties of phthalocyanine monomers, dimers, and crystals , 1990 .

[21]  J. Andre,et al.  Electrical and magnetic properties of thin films and single crystals of bis(phthalocyaninato)lutetium , 1985 .

[22]  J. Brédas,et al.  Electronic structure of metal‐free phthalocyanine: A valence effective Hamiltonian theoretical study , 1988 .

[23]  L. Echegoyen,et al.  Electrochemically-Reversible, Single-Electron Oxidation of C60 and C70 , 1993 .

[24]  K. Seki,et al.  UV Photoelectron Spectroscopy of Organic Molecular Materials , 1987 .

[25]  R. Even,et al.  A one-step electrosynthesis of a molecular semiconductor: lithium phthalocyanine radical (PcLi˙) , 1989 .