Tailored twisted CNT bundle with improved inter-tube slipping performances

[1]  Denvid Lau,et al.  Understanding the role of carbon nanotubes in low-carbon concrete: From experiment to molecular dynamics , 2023, Cement and Concrete Composites.

[2]  Denvid Lau,et al.  Understanding the role of carbon nanotubes in low carbon sulfoaluminate cement-based composite , 2023, Journal of Cleaner Production.

[3]  Denvid Lau,et al.  Degradation of fiber/matrix interface under various environmental and loading conditions: Insights from molecular simulations , 2023, Construction and Building Materials.

[4]  C. Chow,et al.  Artificial-intelligence-led revolution of construction materials: From molecules to Industry 4.0 , 2023, Matter.

[5]  Topology-controlled thermomechanical properties of diamond nanothread enhanced polymeric materials , 2023, Applied Materials Today.

[6]  N. Pugno,et al.  Mechanical Properties of Twisted Carbon Nanotube Bundles with Carbon Linkers from Molecular Dynamics Simulations , 2023, International journal of molecular sciences.

[7]  Yue Li,et al.  The Role of Multi-Walled Carbon Nanotubes for Improving C-S-H Creep Property: An Insight from Atomic Force Microscope and Nuclear Magnetic Resonance , 2022, SSRN Electronic Journal.

[8]  L. Feo,et al.  Developments and Applications of Carbon Nanotube Reinforced Cement-Based Composites as Functional Building Materials , 2022, Frontiers in Materials.

[9]  Y. Gong,et al.  Torsional Properties of Bundles with Randomly Packed Carbon Nanotubes , 2022, Nanomaterials.

[10]  F. Chu,et al.  Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams , 2021 .

[11]  Xiaodong Wang,et al.  Molecular dynamics simulations of thermodynamics and shape memory effect in CNT-epoxy nanocomposites , 2021, Composites Science and Technology.

[12]  Lik-ho Tam,et al.  Coarse-grained molecular simulation of the effects of carbon nanotube dispersion on the mechanics of semicrystalline polymer nanocomposites , 2021, Nanotechnology.

[13]  F. Meng,et al.  Regenerated and rotation-induced cellulose-wrapped oriented CNT fibers for wearable multifunctional sensors. , 2020, Nanoscale.

[14]  Denvid Lau,et al.  Understanding the effect of functionalization in CNT-epoxy nanocomposite from molecular level , 2020 .

[15]  Denvid Lau,et al.  Creep performance of CNT-based nanocomposites: A parametric study , 2019, Carbon.

[16]  R. Ansari,et al.  Creep performance of CNT polymer nanocomposites -An emphasis on viscoelastic interphase and CNT agglomeration , 2019, Composites Part B: Engineering.

[17]  K. Belay,et al.  Effect of twist on the electromechanical properties of carbon nanotube yarns , 2019, Carbon.

[18]  H. Ghasemi,et al.  Mechanical properties of carbon nanotube‐filled polyethylene composites: A molecular dynamics simulation study , 2018, Polymer Composites.

[19]  P. Ajayan,et al.  Composites with carbon nanotubes and graphene: An outlook , 2018, Science.

[20]  Qianqian Li,et al.  Mapping carbon nanotube orientation by fast fourier transform of scanning electron micrographs , 2018, Carbon.

[21]  Jun Young Oh,et al.  How can we make carbon nanotube yarn stronger? , 2018, Composites Science and Technology.

[22]  Judith A. Harrison,et al.  Review of force fields and intermolecular potentials used in atomistic computational materials research , 2018, Applied Physics Reviews.

[23]  M. Miao,et al.  A comparison of the twisted and untwisted structures for one-dimensional carbon nanotube assemblies , 2018 .

[24]  Lik-ho Tam,et al.  Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites , 2017, Nanomaterials.

[25]  Alan Windle,et al.  Aligned carbon nanotube–epoxy composites: the effect of nanotube organization on strength, stiffness, and toughness , 2016, Journal of Materials Science.

[26]  N. Silvestre,et al.  Mechanical behaviour of carbon nanotubes under combined twisting–bending , 2016 .

[27]  Bin Li,et al.  Torsional behavior of single-walled carbon nanotubes , 2015 .

[28]  M. Buehler,et al.  Mesoscale mechanics of twisting carbon nanotube yarns. , 2015, Nanoscale.

[29]  M. Prato,et al.  Rolling up a graphene sheet. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  T. Chou,et al.  Stress relaxation in carbon nanotube-based fibers for load-bearing applications , 2013 .

[31]  M. Giordano,et al.  The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix , 2011 .

[32]  C. Cornwell,et al.  Very-high-strength (60-GPa) carbon nanotube fiber design based on molecular dynamics simulations. , 2011, The Journal of chemical physics.

[33]  J. Elliott,et al.  A model for the strength of yarn-like carbon nanotube fibers. , 2011, ACS nano.

[34]  M. Miao,et al.  Poisson’s ratio and porosity of carbon nanotube dry-spun yarns , 2010 .

[35]  K. Jiang,et al.  Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method , 2010, Nanotechnology.

[36]  Qingwen Li,et al.  Enhancement of friction between carbon nanotubes: an efficient strategy to strengthen fibers. , 2009, ACS nano.

[37]  L. Meng,et al.  Advanced technology for functionalization of carbon nanotubes , 2009 .

[38]  Jian Li,et al.  Carbon nanotube in different shapes , 2009 .

[39]  Matteo Pasquali,et al.  Carbon nanotube-based neat fibers , 2008 .

[40]  Michael Sennett,et al.  High-Performance Carbon Nanotube Fiber , 2007, Science.

[41]  T. Clapp,et al.  Ultrastrong, Stiff, and Lightweight Carbon‐Nanotube Fibers , 2007 .

[42]  V. Varadan,et al.  Torsional buckling of carbon nanotubes , 2007 .

[43]  Yunfei Chen,et al.  Molecular dynamics simulation of the test of single-walled carbon nanotubes under tensile loading , 2007 .

[44]  Lianxi Zheng,et al.  Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. , 2007, Small.

[45]  Y. H. Zhao,et al.  Sustained Growth of Ultralong Carbon Nanotube Arrays for Fiber Spinning , 2006 .

[46]  K. M. Liew,et al.  Twisting effects of carbon nanotube bundles subjected to axial compression and tension , 2006 .

[47]  J. Kang,et al.  Nanotube oscillator based on a short single-walled carbon nanotube bundle , 2006 .

[48]  Cedric Briens,et al.  Carbon Nanotube Synthesis: A Review , 2005 .

[49]  Lu Chang Qin,et al.  Structure and energetics of carbon nanotube ropes , 2005 .

[50]  K. R. Atkinson,et al.  Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology , 2004, Science.

[51]  Q. X. Jia,et al.  Ultralong single-wall carbon nanotubes , 2004, Nature materials.

[52]  Dong Qian,et al.  Load transfer mechanism in carbon nanotube ropes , 2003 .

[53]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[54]  Hongjie Dai,et al.  Carbon nanotubes: opportunities and challenges , 2002 .

[55]  Rodney S. Ruoff,et al.  Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes , 2000 .

[56]  Zettl,et al.  Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes , 2000, Science.

[57]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[58]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[59]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[60]  Steven J. Plimpton,et al.  Parallel Molecular Dynamics Algorithms for Simulation of Molecular Systems , 1995 .

[61]  R. Ruoff,et al.  Structural properties of a carbon-nanotube crystal. , 1994, Physical review letters.

[62]  S. Thamaraikannan,et al.  Atomistic Study of Carbon Nanotubes: Effect of Cut-Off Distance , 2016 .

[63]  M. Miao The role of twist in dry spun carbon nanotube yarns , 2016 .

[64]  Andreas Öchsner,et al.  On the determination of the shear modulus of carbon nanotubes , 2013 .

[65]  Kausala Mylvaganam,et al.  Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes , 2004 .

[66]  Stanley Backer,et al.  Structural mechanics of fibers, yarns, and fabrics , 1969 .