Cascade pericyclic reactions of alleno-acetylenes: facile access to highly substituted cyclobutene, dendralene, pentalene, and indene skeletons.

[1]  E. Anderson Cascade polycyclisations in natural product synthesis. , 2011, Organic & biomolecular chemistry.

[2]  F. Diederich,et al.  Enantiopure, monodisperse alleno-acetylenic cyclooligomers: effect of symmetry and conformational flexibility on the chiroptical properties of carbon-rich compounds. , 2011, Chemistry.

[3]  J. Mascareñas,et al.  Allenes as three-carbon units in catalytic cycloadditions: new opportunities with transition-metal catalysts. , 2011, Chemistry.

[4]  Peter G. Jones,et al.  Preparation of highly hindered polyenes with tert-butyl groups in internal positions. , 2011, Chemistry.

[5]  B. Alcaide,et al.  Metal-catalyzed cycloetherification reactions of β,γ- and γ,δ-allendiols: chemo-, regio-, and stereocontrol in the synthesis of oxacycles. , 2010, Chemistry.

[6]  Ana G. Petrovic,et al.  Enantiomerically pure alleno-acetylenic macrocycles: synthesis, solid-state structures, chiroptical properties, and electron localization function analysis. , 2010, Chemistry.

[7]  W. B. Schweizer,et al.  Homokonjugierte Push‐pull‐ und Spirosysteme: intramolekulare Charge‐Transfer‐Wechselwirkungen und nichtlineare optische Eigenschaften dritter Ordnung , 2010 .

[8]  F. Diederich,et al.  Homoconjugated push-pull and spiro systems: intramolecular charge-transfer interactions and third-order optical nonlinearities. , 2010, Angewandte Chemie.

[9]  B. Alcaide,et al.  Cross-coupling/cyclization reactions of two different allenic moieties. , 2010, Chemistry.

[10]  M. Yamada,et al.  Optische Stabilität axial‐chiraler push‐pull‐substituierter Buta‐1,3‐diene: Effekt einer einzelnen Methylgruppe auf der Oberfläche von C60 , 2010 .

[11]  Michio Yamada,et al.  Optical stability of axially chiral push-pull-substituted buta-1,3-dienes: effect of a single methyl group on the C60 surface. , 2010, Angewandte Chemie.

[12]  Pablo Rivera-Fuentes,et al.  Amplifikation der Chiralität in monodispersen, enantiomerenreinen Allen‐Acetylen‐Oligomeren , 2010 .

[13]  Ana G. Petrovic,et al.  Amplification of chirality in monodisperse, enantiopure alleno-acetylenic oligomers. , 2010, Angewandte Chemie.

[14]  D. Enders,et al.  Organocatalytic cascade reactions as a new tool in total synthesis. , 2010, Nature chemistry.

[15]  K. Nicolaou,et al.  The art of total synthesis through cascade reactions. , 2009, Chemical Society reviews.

[16]  Ana G. Petrovic,et al.  Chiral induction from allenes into twisted 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs): conformational assignment by circular dichroism spectroscopy. , 2009, Chemistry.

[17]  Pablo Rivera-Fuentes,et al.  Ein enantiomerenreiner alleno‐acetylenischer Makrocyclus: Synthese und Interpretation seiner herausragenden chiroptischen Eigenschaften , 2009 .

[18]  F. Diederich,et al.  An enantiomerically pure alleno-acetylenic macrocycle: synthesis and rationalization of its outstanding chiroptical response. , 2009, Angewandte Chemie.

[19]  Ivan Vilotijevic,et al.  Epoxidöffnungskaskaden zur Synthese polycyclischer Polyether-Naturstoffe , 2009 .

[20]  T. Jamison,et al.  Epoxide-opening cascades in the synthesis of polycyclic polyether natural products. , 2009, Angewandte Chemie.

[21]  F. Diederich,et al.  1,3-Diethynylallenes (DEAs): enantioselective synthesis, absolute configuration, and chiral induction in 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs). , 2008, Chemistry.

[22]  Mathieu Leclère,et al.  Asymmetric allenophanes: synthesis of a tris-meta-allenophane and tetrakis-meta-allenophane by sequential cross-coupling. , 2008, Angewandte Chemie.

[23]  F. Diederich,et al.  A novel reaction of 7,7,8,8-tetracyanoquinodimethane (TCNQ): charge-transfer chromophores by [2 + 2] cycloaddition with alkynes. , 2007, Chemical communications.

[24]  F. Diederich,et al.  Charge‐Transfer‐Chromophore durch Cycloaddition‐Retro‐Elektrocyclisierung: multivalente Systeme und Kaskadenreaktionen , 2007 .

[25]  F. Diederich,et al.  Charge-transfer chromophores by cycloaddition-retro-electrocyclization: multivalent systems and cascade reactions. , 2007, Angewandte Chemie.

[26]  F. Diederich,et al.  Donor-substituted 1,1,4,4-tetracyanobutadienes (TCBDS): new chromophores with efficient intramolecular charge-transfer interactions by atom-economic synthesis. , 2006, Chemistry.

[27]  P. Seiler,et al.  Aufbau formstabiler chiraler alleno‐acetylenischer Makrocyclen und Cyclophane über Acetylenkupplungen mit 1,3‐Diethinylallenen , 2005 .

[28]  F. Diederich,et al.  Shape-persistent chiral alleno-acetylenic macrocycles and cyclophanes by acetylenic scaffolding with 1,3-diethynylallenes. , 2005, Angewandte Chemie.

[29]  A. G. Fallis,et al.  Acetylenic allenophanes: an asymmetric synthesis of a Bis(alleno)-bis(butadiynyl)-meta-cyclophane. , 2005, Angewandte Chemie.

[30]  Matthew D. Clay and,et al.  Acetylenic Allenophanes: An Asymmetric Synthesis of a Bis(alleno)-bis(butadiynyl)-meta-cyclophane† , 2005 .

[31]  J. Gajewski 8 – C7H6 – C7H12 , 2004 .

[32]  F. Diederich,et al.  1,3-Diethynylallenes: Carbon-Rich Modules for Three-Dimensional Acetylenic Scaffolding , 2002 .

[33]  F. Diederich,et al.  1,3-Diethynylallenes: New Modules for Three-Dimensional Acetylenic Scaffolding. , 2001, Angewandte Chemie.

[34]  Spong,et al.  Ab initio computational studies of conformationally restricted cope rearrangements. First examples of fully concerted allenyl cope rearrangements , 2000, The Journal of organic chemistry.

[35]  F. Vögtle,et al.  Synthesis of the First [34]Allenophane: 1,3,10,12,19,21,28,30‐Octamethyl[3.3.3.3]paracyclophan‐1,2,10,11,19,20,28,29‐octaene , 1999 .

[36]  Synthese des ersten [34]Allenophans: 1,3,10,12,19,21,28,30-Octamethyl[3.3.3.3]paracyclophan-1,2,10,11,19,20,28,29-octaen , 1999 .

[37]  J. A. Duncan,et al.  Ab Initio Computational Study of the Allenyl Cope Rearrangement of syn-7-Allenylnorbornene , 1999 .

[38]  E. Vedejs,et al.  Decumulation of Allenes Drives the Cope Ring Expansion to 1,5-Cyclodecadienes , 1994 .

[39]  J. A. Duncan,et al.  Stereoselective thermal rearrangement of syn-7-(1,2-butadienyl)-1-methylbicyclo[2.2.1]hept-2-ene [syn-7-(3-methylallenyl)-1-methylnorbornene] , 1990 .

[40]  R. Gibbs,et al.  An enantioselective central-axial-central chiral element transfer process leading to a concise synthesis of (+)-sterpurene: Intramolecular Diels-Alder reactions of vinylallene sulfoxides , 1989 .

[41]  J. A. Duncan,et al.  Synthesis and thermal rearrangement of 7-(1,2-butadien-1-yl)bicyclo[2.2.1]hept-2-ene [7-(3-methylallenyl)norbornene] , 1982 .

[42]  A. Doutheau,et al.  Synthese et transposition thermique d'alcools α-ethyleniques β'-alleniques , 1980 .

[43]  G. Köbrich,et al.  Partielle Racematspaltung eines atropisomeren Butadiens , 1974 .

[44]  M. Rösner,et al.  Partial Enantiomerization of an Atropisomeric Butadiene , 1974 .

[45]  A. Mannschreck,et al.  Chirale Butadiene 1. H-NMR-Spektroskopischer Nachweis der behinderten Rotation bei hexasubstituierten Butadienen , 1972 .

[46]  K. Kohlrausch,et al.  Raman‐Effekt und Konstitutions‐Probleme, XVIII. Mitteil.: Hexachlorbutadien und Oktachlorcyclopenten , 1942 .