Cascade pericyclic reactions of alleno-acetylenes: facile access to highly substituted cyclobutene, dendralene, pentalene, and indene skeletons.
暂无分享,去创建一个
[1] E. Anderson. Cascade polycyclisations in natural product synthesis. , 2011, Organic & biomolecular chemistry.
[2] F. Diederich,et al. Enantiopure, monodisperse alleno-acetylenic cyclooligomers: effect of symmetry and conformational flexibility on the chiroptical properties of carbon-rich compounds. , 2011, Chemistry.
[3] J. Mascareñas,et al. Allenes as three-carbon units in catalytic cycloadditions: new opportunities with transition-metal catalysts. , 2011, Chemistry.
[4] Peter G. Jones,et al. Preparation of highly hindered polyenes with tert-butyl groups in internal positions. , 2011, Chemistry.
[5] B. Alcaide,et al. Metal-catalyzed cycloetherification reactions of β,γ- and γ,δ-allendiols: chemo-, regio-, and stereocontrol in the synthesis of oxacycles. , 2010, Chemistry.
[6] Ana G. Petrovic,et al. Enantiomerically pure alleno-acetylenic macrocycles: synthesis, solid-state structures, chiroptical properties, and electron localization function analysis. , 2010, Chemistry.
[7] W. B. Schweizer,et al. Homokonjugierte Push‐pull‐ und Spirosysteme: intramolekulare Charge‐Transfer‐Wechselwirkungen und nichtlineare optische Eigenschaften dritter Ordnung , 2010 .
[8] F. Diederich,et al. Homoconjugated push-pull and spiro systems: intramolecular charge-transfer interactions and third-order optical nonlinearities. , 2010, Angewandte Chemie.
[9] B. Alcaide,et al. Cross-coupling/cyclization reactions of two different allenic moieties. , 2010, Chemistry.
[10] M. Yamada,et al. Optische Stabilität axial‐chiraler push‐pull‐substituierter Buta‐1,3‐diene: Effekt einer einzelnen Methylgruppe auf der Oberfläche von C60 , 2010 .
[11] Michio Yamada,et al. Optical stability of axially chiral push-pull-substituted buta-1,3-dienes: effect of a single methyl group on the C60 surface. , 2010, Angewandte Chemie.
[12] Pablo Rivera-Fuentes,et al. Amplifikation der Chiralität in monodispersen, enantiomerenreinen Allen‐Acetylen‐Oligomeren , 2010 .
[13] Ana G. Petrovic,et al. Amplification of chirality in monodisperse, enantiopure alleno-acetylenic oligomers. , 2010, Angewandte Chemie.
[14] D. Enders,et al. Organocatalytic cascade reactions as a new tool in total synthesis. , 2010, Nature chemistry.
[15] K. Nicolaou,et al. The art of total synthesis through cascade reactions. , 2009, Chemical Society reviews.
[16] Ana G. Petrovic,et al. Chiral induction from allenes into twisted 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs): conformational assignment by circular dichroism spectroscopy. , 2009, Chemistry.
[17] Pablo Rivera-Fuentes,et al. Ein enantiomerenreiner alleno‐acetylenischer Makrocyclus: Synthese und Interpretation seiner herausragenden chiroptischen Eigenschaften , 2009 .
[18] F. Diederich,et al. An enantiomerically pure alleno-acetylenic macrocycle: synthesis and rationalization of its outstanding chiroptical response. , 2009, Angewandte Chemie.
[19] Ivan Vilotijevic,et al. Epoxidöffnungskaskaden zur Synthese polycyclischer Polyether-Naturstoffe , 2009 .
[20] T. Jamison,et al. Epoxide-opening cascades in the synthesis of polycyclic polyether natural products. , 2009, Angewandte Chemie.
[21] F. Diederich,et al. 1,3-Diethynylallenes (DEAs): enantioselective synthesis, absolute configuration, and chiral induction in 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs). , 2008, Chemistry.
[22] Mathieu Leclère,et al. Asymmetric allenophanes: synthesis of a tris-meta-allenophane and tetrakis-meta-allenophane by sequential cross-coupling. , 2008, Angewandte Chemie.
[23] F. Diederich,et al. A novel reaction of 7,7,8,8-tetracyanoquinodimethane (TCNQ): charge-transfer chromophores by [2 + 2] cycloaddition with alkynes. , 2007, Chemical communications.
[24] F. Diederich,et al. Charge‐Transfer‐Chromophore durch Cycloaddition‐Retro‐Elektrocyclisierung: multivalente Systeme und Kaskadenreaktionen , 2007 .
[25] F. Diederich,et al. Charge-transfer chromophores by cycloaddition-retro-electrocyclization: multivalent systems and cascade reactions. , 2007, Angewandte Chemie.
[26] F. Diederich,et al. Donor-substituted 1,1,4,4-tetracyanobutadienes (TCBDS): new chromophores with efficient intramolecular charge-transfer interactions by atom-economic synthesis. , 2006, Chemistry.
[27] P. Seiler,et al. Aufbau formstabiler chiraler alleno‐acetylenischer Makrocyclen und Cyclophane über Acetylenkupplungen mit 1,3‐Diethinylallenen , 2005 .
[28] F. Diederich,et al. Shape-persistent chiral alleno-acetylenic macrocycles and cyclophanes by acetylenic scaffolding with 1,3-diethynylallenes. , 2005, Angewandte Chemie.
[29] A. G. Fallis,et al. Acetylenic allenophanes: an asymmetric synthesis of a Bis(alleno)-bis(butadiynyl)-meta-cyclophane. , 2005, Angewandte Chemie.
[30] Matthew D. Clay and,et al. Acetylenic Allenophanes: An Asymmetric Synthesis of a Bis(alleno)-bis(butadiynyl)-meta-cyclophane† , 2005 .
[31] J. Gajewski. 8 – C7H6 – C7H12 , 2004 .
[32] F. Diederich,et al. 1,3-Diethynylallenes: Carbon-Rich Modules for Three-Dimensional Acetylenic Scaffolding , 2002 .
[33] F. Diederich,et al. 1,3-Diethynylallenes: New Modules for Three-Dimensional Acetylenic Scaffolding. , 2001, Angewandte Chemie.
[34] Spong,et al. Ab initio computational studies of conformationally restricted cope rearrangements. First examples of fully concerted allenyl cope rearrangements , 2000, The Journal of organic chemistry.
[35] F. Vögtle,et al. Synthesis of the First [34]Allenophane: 1,3,10,12,19,21,28,30‐Octamethyl[3.3.3.3]paracyclophan‐1,2,10,11,19,20,28,29‐octaene , 1999 .
[36] Synthese des ersten [34]Allenophans: 1,3,10,12,19,21,28,30-Octamethyl[3.3.3.3]paracyclophan-1,2,10,11,19,20,28,29-octaen , 1999 .
[37] J. A. Duncan,et al. Ab Initio Computational Study of the Allenyl Cope Rearrangement of syn-7-Allenylnorbornene , 1999 .
[38] E. Vedejs,et al. Decumulation of Allenes Drives the Cope Ring Expansion to 1,5-Cyclodecadienes , 1994 .
[39] J. A. Duncan,et al. Stereoselective thermal rearrangement of syn-7-(1,2-butadienyl)-1-methylbicyclo[2.2.1]hept-2-ene [syn-7-(3-methylallenyl)-1-methylnorbornene] , 1990 .
[40] R. Gibbs,et al. An enantioselective central-axial-central chiral element transfer process leading to a concise synthesis of (+)-sterpurene: Intramolecular Diels-Alder reactions of vinylallene sulfoxides , 1989 .
[41] J. A. Duncan,et al. Synthesis and thermal rearrangement of 7-(1,2-butadien-1-yl)bicyclo[2.2.1]hept-2-ene [7-(3-methylallenyl)norbornene] , 1982 .
[42] A. Doutheau,et al. Synthese et transposition thermique d'alcools α-ethyleniques β'-alleniques , 1980 .
[43] G. Köbrich,et al. Partielle Racematspaltung eines atropisomeren Butadiens , 1974 .
[44] M. Rösner,et al. Partial Enantiomerization of an Atropisomeric Butadiene , 1974 .
[45] A. Mannschreck,et al. Chirale Butadiene 1. H-NMR-Spektroskopischer Nachweis der behinderten Rotation bei hexasubstituierten Butadienen , 1972 .
[46] K. Kohlrausch,et al. Raman‐Effekt und Konstitutions‐Probleme, XVIII. Mitteil.: Hexachlorbutadien und Oktachlorcyclopenten , 1942 .