Homogeneous selections from hyperplanes

Given d+1 hyperplanes h"1,...,h"d"+"1 in general position in R^d, let @?(h"1,...,h"d"+"1) denote the unique bounded simplex enclosed by them. There exists a constant c(d)>0 such that for any finite families H"1,...,H"d"+"1 of hyperplanes in R^d, there are subfamilies H"i^@?@?H"i with |H"i^@?|>=c(d)|H"i| and a point p@?R^d with the property that p@?@?(h"1,...,h"d"+"1) for all h"i@?H"i^@?.

[1]  Noga Alon,et al.  Crossing patterns of semi-algebraic sets , 2005, J. Comb. Theory, Ser. A.

[2]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[3]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[4]  R. Karasev,et al.  Dual central point theorems and their generalizations , 2009, 0909.4915.

[5]  János Pach A Tverberg-type result on multicolored simplices , 1998, Comput. Geom..

[6]  R. Pollack,et al.  Geometric Transversal Theory , 1993 .

[7]  Pavel Valtr,et al.  A Positive Fraction Erdos - Szekeres Theorem , 1998, Discret. Comput. Geom..

[8]  H. Tverberg A Generalization of Radon's Theorem , 1966 .

[9]  János Pach,et al.  Overlap properties of geometric expanders , 2011, SODA '11.

[10]  Alfredo Hubard,et al.  Space Crossing Numbers , 2012, Comb. Probab. Comput..

[11]  Roman Karasev,et al.  Dual theorems on central points and their generalizations , 2008 .