A No-Equilibrium Hyperchaotic System and Its Fractional-Order Form

No-equilibrium system with chaotic behavior has attracted considerable attention recently because of its hidden attractor. We study a new four-dimensional system without equilibrium in this work. The new no-equilibrium system exhibits hyperchaos and coexisting attractors. Amplitude control feature of the system is also discovered. The commensurate fractional-order version of the proposed system is studied using numerical simulations. By tuning the commensurate fractional-order, the proposed system displays a wide variety of dynamical behaviors ranging from coexistence of quasiperiodic and chaotic attractors and bistable chaotic attractors to point attractor via transient chaos.

[1]  Luigi Fortuna,et al.  Dynamics and Synchronization of a Novel Hyperchaotic System Without Equilibrium , 2014, Int. J. Bifurc. Chaos.

[2]  Abbas Dandache,et al.  Design and FPGA implementation of a wireless hyperchaotic communication system for secure real-time image transmission , 2013, EURASIP J. Image Video Process..

[3]  S Yanchuk,et al.  Routes to complex dynamics in a ring of unidirectionally coupled systems. , 2010, Chaos.

[4]  G. Leonov,et al.  Hidden attractors in dynamical systems , 2016 .

[5]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[6]  W. T. Rhodes,et al.  Communicating with hyperchaos: The dynamics of a DNLF emitter and recovery of transmitted information , 2003 .

[7]  G. A. Leonov,et al.  Lyapunov dimension formula for the global attractor of the Lorenz system , 2015, Commun. Nonlinear Sci. Numer. Simul..

[8]  Giuseppe Grassi,et al.  Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization , 2015 .

[9]  N. Kuznetsov,et al.  The Lyapunov dimension and its estimation via the Leonov method , 2016, 1602.05410.

[10]  G. A. Leonov,et al.  Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations , 2014, 1410.2016.

[11]  N. Levinson,et al.  Transformation Theory of Non-Linear Differential Equations of the Second Order , 1944 .

[12]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[13]  R. Toral,et al.  Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop , 2005, IEEE Journal of Quantum Electronics.

[14]  Julien Clinton Sprott,et al.  Finding coexisting attractors using amplitude control , 2014 .

[15]  Nikolay V. Kuznetsov,et al.  Control of multistability in hidden attractors , 2015 .

[16]  Rongrong Wang,et al.  A new finding of the existence of hidden hyperchaotic attractors with no equilibria , 2014, Math. Comput. Simul..

[17]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .

[18]  Erik Mosekilde,et al.  Multistability and hidden attractors in a multilevel DC/DC converter , 2015, Math. Comput. Simul..

[19]  Luigi Fortuna,et al.  A chaotic circuit based on Hewlett-Packard memristor. , 2012, Chaos.

[20]  Giuseppe Grassi,et al.  New 3D-scroll attractors in hyperchaotic Chua's Circuits Forming a Ring , 2003, Int. J. Bifurc. Chaos.

[21]  Jian Ma,et al.  Simplified hyper-chaotic systems generating multi-wing non-equilibrium attractors , 2016 .

[22]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[23]  Guanrong Chen,et al.  Hyperchaos evolved from the generalized Lorenz equation , 2005, Int. J. Circuit Theory Appl..

[24]  Xiao-Song Yang,et al.  Hyperchaos and bifurcation in a new class of four-dimensional Hopfield neural networks , 2006, Neurocomputing.

[25]  Julien Clinton Sprott,et al.  Variable-boostable chaotic flows , 2016 .

[26]  Bocheng Bao,et al.  Hidden extreme multistability in memristive hyperchaotic system , 2017 .

[27]  Guanrong Chen,et al.  Constructing a chaotic system with any number of equilibria , 2012, 1201.5751.

[28]  Weihua Deng,et al.  Short memory principle and a predictor-corrector approach for fractional differential equations , 2007 .

[29]  Sundarapandian Vaidyanathan,et al.  Hidden attractors in a chaotic system with an exponential nonlinear term , 2015 .

[30]  Qigui Yang,et al.  Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria , 2011 .

[31]  Christos Volos,et al.  A Memristive Hyperchaotic System without Equilibrium , 2014, TheScientificWorldJournal.

[32]  Karthikeyan Rajagopal,et al.  FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization , 2017 .

[33]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[34]  Sara Dadras,et al.  Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form , 2012 .

[35]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[36]  J. Yorke,et al.  The liapunov dimension of strange attractors , 1983 .

[37]  S. Mascolo,et al.  A system theory approach for designing cryptosystems based on hyperchaos , 1999 .

[38]  Julien Clinton Sprott,et al.  Constructing Chaotic Systems with Total Amplitude Control , 2015, Int. J. Bifurc. Chaos.

[39]  E. O. Ochola,et al.  A hyperchaotic system without equilibrium , 2012 .

[40]  Honggang Wang,et al.  A switched hyperchaotic system and its FPGA circuitry implementation , 2011 .

[41]  Tomasz Kapitaniak,et al.  Rare and hidden attractors in Van der Pol-Duffing oscillators , 2015 .

[42]  O. Rössler An equation for hyperchaos , 1979 .

[43]  Julien Clinton Sprott,et al.  Amplitude control approach for chaotic signals , 2013 .

[44]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.