Processing single-cell RNA-seq datasets using SingCellaR

[1]  Elisabeth F. Heuston,et al.  Transitions in lineage specification and gene regulatory networks in hematopoietic stem/progenitor cells over human development , 2021, Cell reports.

[2]  Xiuyuan Cheng,et al.  Detection of differentially abundant cell subpopulations in scRNA-seq data , 2021, Proceedings of the National Academy of Sciences.

[3]  Xiaowen Chen,et al.  A Comparison for Dimensionality Reduction Methods of Single-Cell RNA-seq Data , 2021, Frontiers in Genetics.

[4]  Joshua D. Welch,et al.  Iterative single-cell multi-omic integration using online learning , 2021, Nature Biotechnology.

[5]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[6]  Elisabeth F. Heuston,et al.  Single-Cell Analyses Reveal Megakaryocyte-Biased Hematopoiesis in Myelofibrosis and Identify Mutant Clone-Specific Targets , 2020, Molecular cell.

[7]  Rui Xue,et al.  scCATCH: Automatic Annotation on Cell Types of Clusters from Single-Cell RNA Sequencing Data , 2020, iScience.

[8]  Kok Siong Ang,et al.  A benchmark of batch-effect correction methods for single-cell RNA sequencing data , 2020, Genome Biology.

[9]  Howard Y. Chang,et al.  Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia , 2019, Nature Biotechnology.

[10]  Kieran R. Campbell,et al.  Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling , 2019, Nature Methods.

[11]  Kamil Slowikowski,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2019, Nature Methods.

[12]  Bonnie Berger,et al.  Efficient integration of heterogeneous single-cell transcriptomes using Scanorama , 2019, Nature Biotechnology.

[13]  Raphael Gottardo,et al.  Orchestrating single-cell analysis with Bioconductor , 2019, Nature Methods.

[14]  Alice Giustacchini,et al.  Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing , 2019, Molecular cell.

[15]  Cole Trapnell,et al.  Supervised classification enables rapid annotation of cell atlases , 2019, Nature Methods.

[16]  Kieran R. Campbell,et al.  Probabilistic cell type assignment of single-cell transcriptomic data reveals spatiotemporal microenvironment dynamics in human cancers , 2019, bioRxiv.

[17]  Sarah A Teichmann,et al.  A test metric for assessing single-cell RNA-seq batch correction , 2018, Nature Methods.

[18]  A. Butte,et al.  Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage , 2018, Nature Immunology.

[19]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[20]  Gary D Bader,et al.  Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations , 2018, Nature Communications.

[21]  Samuel L. Wolock,et al.  Scrublet: computational identification of cell doublets in single-cell transcriptomic data , 2018, bioRxiv.

[22]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[23]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[24]  J. Aerts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017, Nature Methods.

[25]  R. Sandberg,et al.  Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia , 2017, Nature Medicine.

[26]  Gennady Korotkevich,et al.  Fast gene set enrichment analysis , 2016, bioRxiv.

[27]  Fabian J. Theis,et al.  Diffusion maps for high-dimensional single-cell analysis of differentiation data , 2015, Bioinform..

[28]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[29]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[30]  M. Jacomy,et al.  ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software , 2014, PloS one.

[31]  Cole Trapnell,et al.  Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions , 2014, Nature Biotechnology.

[32]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[33]  J. Mesirov,et al.  From the Cover: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005 .

[34]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.