Innate antiviral host defense attenuates TGF-β function through IRF3-mediated suppression of Smad signaling.

[1]  K. Mossman,et al.  Danger, diversity and priming in innate antiviral immunity. , 2014, Cytokine & growth factor reviews.

[2]  C. Reis e Sousa,et al.  Cytosolic Sensing of Viruses , 2013, Immunity.

[3]  Samy Lamouille,et al.  TGF-&bgr; signaling and epithelial–mesenchymal transition in cancer progression , 2013, Current opinion in oncology.

[4]  R. Weinberg,et al.  Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. , 2012, Seminars in cancer biology.

[5]  Daniel J. Kuster,et al.  Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo , 2012, The Journal of experimental medicine.

[6]  J. Massagué TGFβ signalling in context , 2012, Nature Reviews Molecular Cell Biology.

[7]  C. Heldin,et al.  Regulation of EMT by TGFβ in cancer , 2012, FEBS letters.

[8]  R. Derynck,et al.  Post‐translational regulation of TGF‐β receptor and Smad signaling , 2012, FEBS letters.

[9]  J. Turnay,et al.  Histone deacetylase inhibitors upregulate MMP11 gene expression through Sp1/Smad complexes in human colon adenocarcinoma cells. , 2012, Biochimica et biophysica acta.

[10]  J. Hiscott,et al.  Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. , 2011, Current opinion in immunology.

[11]  T. Fujita,et al.  RIG‐I‐like receptors: cytoplasmic sensors for non‐self RNA , 2011, Immunological reviews.

[12]  S. Akira,et al.  Recognition of nucleic acids by pattern‐recognition receptors and its relevance in autoimmunity , 2011, Immunological reviews.

[13]  L. Lefrançois,et al.  Regional and mucosal memory T cells , 2011, Nature Immunology.

[14]  H. Chapman,et al.  Epithelial-mesenchymal interactions in pulmonary fibrosis. , 2011, Annual review of physiology.

[15]  Jerzy Adamski,et al.  IKK&agr; controls canonical TGF&bgr;–SMAD signaling to regulate genes expressing SNAIL and SLUG during EMT in Panc1 cells , 2013, Journal of Cell Science.

[16]  Kohei Miyazono,et al.  TGFβ signalling: a complex web in cancer progression , 2010, Nature Reviews Cancer.

[17]  Li Yang,et al.  TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. , 2010, Trends in immunology.

[18]  J. C. McDermott,et al.  Nuclear Function of Smad7 Promotes Myogenesis , 2009, Molecular and Cellular Biology.

[19]  P. Cohen,et al.  Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and activation. , 2009, The Journal of biological chemistry.

[20]  M. A. Curotto de Lafaille,et al.  Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? , 2009, Immunity.

[21]  Samy Lamouille,et al.  TGF-β-induced epithelial to mesenchymal transition , 2009, Cell Research.

[22]  H. Aburatani,et al.  Chromatin Immunoprecipitation on Microarray Analysis of Smad2/3 Binding Sites Reveals Roles of ETS1 and TFAP2A in Transforming Growth Factor β Signaling , 2008, Molecular and Cellular Biology.

[23]  R. Flavell,et al.  TGF-β: A Master of All T Cell Trades , 2008, Cell.

[24]  L. Chin,et al.  Direct transcriptional activation of promyelocytic leukemia protein by IFN regulatory factor 3 induces the p53-dependent growth inhibition of cancer cells. , 2007, Cancer research.

[25]  Samy Lamouille,et al.  Cell size and invasion in TGF-β–induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway , 2007, The Journal of cell biology.

[26]  M. Neurath,et al.  In vitro generation of CD4+CD25+ regulatory cells from murine naive T cells , 2007, Nature Protocols.

[27]  T. Curiel,et al.  Tregs and rethinking cancer immunotherapy. , 2007, The Journal of clinical investigation.

[28]  Feng Chen,et al.  Smad7 Antagonizes Transforming Growth Factor β Signaling in the Nucleus by Interfering with Functional Smad-DNA Complex Formation , 2007, Molecular and Cellular Biology.

[29]  C. Heldin,et al.  Transforming growth factor-β employs HMGA2 to elicit epithelial–mesenchymal transition , 2006, The Journal of cell biology.

[30]  C. Coban,et al.  Essential role of IPS-1 in innate immune responses against RNA viruses , 2006, The Journal of experimental medicine.

[31]  D. Sheppard,et al.  Transforming growth factor beta: a central modulator of pulmonary and airway inflammation and fibrosis. , 2006, Proceedings of the American Thoracic Society.

[32]  H. Weiner,et al.  Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells , 2006, Nature.

[33]  T. Gelehrter,et al.  Role of steroid receptor coactivators in glucocorticoid and transforming growth factor beta regulation of plasminogen activator inhibitor gene expression. , 2006, Molecular endocrinology.

[34]  S. Akira,et al.  Pathogen Recognition and Innate Immunity , 2006, Cell.

[35]  Xiaoyu Hu,et al.  The GRIP1:IRF3 interaction as a target for glucocorticoid receptor‐mediated immunosuppression , 2006, The EMBO journal.

[36]  R. Derynck,et al.  SPECIFICITY AND VERSATILITY IN TGF-β SIGNALING THROUGH SMADS , 2005 .

[37]  Cheng Liu,et al.  Crystal structure of IRF-3 in complex with CBP. , 2005, Structure.

[38]  Mark P. de Caestecker,et al.  Structural Basis of Heteromeric Smad Protein Assembly in TGF-β Signaling , 2004 .

[39]  Li Li,et al.  Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3 , 2003, The Journal of experimental medicine.

[40]  S. Akira,et al.  X-ray crystal structure of IRF-3 and its functional implications , 2003, Nature Structural Biology.

[41]  R. Derynck,et al.  Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation , 2003, Nature Structural Biology.

[42]  Ying E. Zhang,et al.  Smad-dependent and Smad-independent pathways in TGF-β family signalling , 2003, Nature.

[43]  Guo-Ping Zhou,et al.  Triggering the Interferon Antiviral Response Through an IKK-Related Pathway , 2003, Science.

[44]  B. Olson,et al.  Inhibition of Transforming Growth Factor (TGF)- 1–Induced Extracellular Matrix with a Novel Inhibitor of the TGF- Type I Receptor Kinase Activity: SB-431542 , 2002 .

[45]  Seong-Jin Kim,et al.  The Androgen Receptor Represses Transforming Growth Factor-β Signaling through Interaction with Smad3* , 2002, The Journal of Biological Chemistry.

[46]  E. Fraenkel,et al.  A small domain of CBP/p300 binds diverse proteins: solution structure and functional studies. , 2001, Molecular cell.

[47]  J. Massagué,et al.  TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b , 2001, Nature Cell Biology.

[48]  R. Derynck,et al.  Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15Ink4B transcription in response to TGF‐β , 2000 .

[49]  J. Massagué,et al.  Inhibition of transforming growth factor-β/SMAD signalling by the interferon-γ/STAT pathway , 1999, Nature.

[50]  D. Levy,et al.  Differential viral induction of distinct interferon‐α genes by positive feedback through interferon regulatory factor‐7 , 1998, The EMBO journal.

[51]  R. Derynck,et al.  Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription , 1998, Nature.

[52]  R. Derynck,et al.  The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. , 1998, Genes & development.

[53]  T. Hunter,et al.  TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. , 1998, Genes & development.

[54]  A. Moustakas,et al.  Regulation of the human p21/WAF1/Cip1 promoter in hepatic cells by functional interactions between Sp1 and Smad family members. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. Hiscott,et al.  Virus-Dependent Phosphorylation of the IRF-3 Transcription Factor Regulates Nuclear Translocation, Transactivation Potential, and Proteasome-Mediated Degradation , 1998, Molecular and Cellular Biology.

[56]  N. Reich,et al.  Interferon Regulatory Factor 3 and CREB-Binding Protein/p300 Are Subunits of Double-Stranded RNA-Activated Transcription Factor DRAF1 , 1998, Molecular and Cellular Biology.

[57]  T. Maniatis,et al.  Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. , 1998, Molecular cell.

[58]  C. Heldin,et al.  Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling , 1997, Nature.

[59]  K. Miyazono,et al.  Smad6 inhibits signalling by the TGF-β superfamily , 1997, Nature.

[60]  J. Wrana,et al.  The MAD-Related Protein Smad7 Associates with the TGFβ Receptor and Functions as an Antagonist of TGFβ Signaling , 1997, Cell.

[61]  洋英 大西,et al.  膵疾患におけるInterferon Regulatory Factorの役割 , 2014 .

[62]  Ying E Zhang,et al.  Non-Smad pathways in TGF-β signaling , 2009, Cell Research.

[63]  T. Maniatis,et al.  IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. , 2003, Nature immunology.

[64]  R. Derynck,et al.  Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. , 2000, The EMBO journal.

[65]  C. Heldin,et al.  Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. , 1997, Nature.

[66]  D Falb,et al.  The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. , 1997, Cell.

[67]  R. Derynck,et al.  Transforming Growth Factor (cid:2) /Smad3 Signaling Regulates IRF-7 Function and Transcriptional Activation of the Beta Interferon Promoter , 2022 .