Modelling Time-Varying Exchange Rate Dependence Using the Conditional Copula

Linear correlation is only an adequate means of describing the dependence between two random variables when they are jointly elliptically distributed. When the joint distribution of two or more variables is not elliptical the linear correlation coefficient becomes just one of many possible ways of summarising the dependence structure between the variables. In this paper we make use of a theorem due to Sklar (1959), which shows that an n-dimensional distribution function may be decomposed into its n marginal distributions, and a copula, which completely describes the dependence between the n variables. We verify that Sklar's theorem may be extended to conditional distributions, and apply it to the modelling of the time-varying joint distribution of the Deutsche mark - U.S. dollar and Yen - U.S. dollar exchange rate returns. We find evidence that the conditional dependence between these exchange rates is time-varying, and that it is asymmetric: dependence is greater during appreciations of the U.S. dollar against the mark and the yen than during depreciations of the U.S. dollar. We also find strong evidence of a structural break in the conditional copula following the introduction of the euro.

[1]  K. Pearson On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such that it Can be Reasonably Supposed to have Arisen from Random Sampling , 1900 .

[2]  R. Fisher,et al.  Statistical Methods for Research Workers , 1930, Nature.

[3]  K. Pearson ON A METHOD OF DETERMINING WHETHER A SAMPLE OF SIZE n SUPPOSED TO HAVE BEEN DRAWN FROM A PARENT POPULATION HAVING A KNOWN PROBABILITY INTEGRAL HAS PROBABLY BEEN DRAWN AT RANDOM , 1933 .

[4]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[5]  J. Neyman »Smooth test» for goodness of fit , 1937 .

[6]  E. S. Pearson THE PROBABILITY INTEGRAL TRANSFORMATION FOR TESTING GOODNESS OF FIT AND COMBINING INDEPENDENT TESTS OF SIGNIFICANCE , 1938 .

[7]  N. L. Johnson,et al.  The probability integral transformation when parameters are estimated from the sample. , 1948, Biometrika.

[8]  H. Riedwyl Goodness of Fit , 1967 .

[9]  A. Sampson,et al.  Uniform representations of bivariate distributions , 1975 .

[10]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[11]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[12]  M. E. Johnson,et al.  A Family of Distributions for Modelling Non‐Elliptically Symmetric Multivariate Data , 1981 .

[13]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[14]  D. Oakes A Model for Association in Bivariate Survival Data , 1982 .

[15]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[16]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[17]  T. Bollerslev,et al.  A CONDITIONALLY HETEROSKEDASTIC TIME SERIES MODEL FOR SPECULATIVE PRICES AND RATES OF RETURN , 1987 .

[18]  D. Oakes,et al.  Bivariate survival models induced by frailties , 1989 .

[19]  John L. Kling,et al.  Calibration-Based Predictive Distributions: An Application of Prequential Analysis to Interest Rates, Money, Prices, and Output , 1989 .

[20]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[21]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[22]  William H. Press,et al.  Numerical recipes , 1990 .

[23]  A. W. Kemp,et al.  Continuous Bivariate Distributions, Emphasising Applications , 1991 .

[24]  Chin-Diew Lai,et al.  Continuous Bivariate Distributions, Emphasising Applications , 1992 .

[25]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[26]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[27]  R. Engle,et al.  Multivariate Simultaneous Generalized ARCH , 1995, Econometric Theory.

[28]  Emiliano A. Valdez,et al.  Annuity Valuation with Dependent Mortality , 1996 .

[29]  Christian Genest,et al.  A nonparametric estimation procedure for bivariate extreme value copulas , 1997 .

[30]  Anthony S. Tay,et al.  Evaluating Density Forecasts , 1997 .

[31]  H. Joe Multivariate models and dependence concepts , 1998 .

[32]  K. Judd Numerical methods in economics , 1998 .

[33]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .

[34]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[35]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[36]  Alan G. White,et al.  Value at Risk When Daily Changes in Market Variables are not Normally Distributed , 1998 .

[37]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[38]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[39]  J. Rosenberg Semiparametric Pricing of Multivariate Contingent Claims , 1999 .

[40]  P. Embrechts,et al.  Correlation: Pitfalls and Alternatives , 1999 .

[41]  Anthony S. Tay,et al.  Multivariate Density Forecast Evaluation and Calibration In Financial Risk Management: High-Frequency Returns on Foreign Exchange , 1999, Review of Economics and Statistics.

[42]  Takatoshi Ito,et al.  Changes in Exchange Rates in Rapidly Developing Countries: Theory, Practice, and Policy Issues (NBER-EASE volume 7) , 1999 .

[43]  Jeremy Berkowitz Evaluating the Forecasts of Risk Models , 1999 .

[44]  Andrew Ang,et al.  Asymmetric Correlations of Equity Portfolios , 2001 .

[45]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[46]  Campbell R. Harvey,et al.  Conditional Skewness in Asset Pricing Tests , 1999 .

[47]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[48]  Jason P. Fine,et al.  On association in a copula with time transformations , 2000 .

[49]  J. Rosenberg Nonparametric Pricing of Multivariate Contingent Claims , 2000 .

[50]  Andrew J. Patton,et al.  Multivariate GARCH Modeling of Exchange Rate Volatility Transmission in the European Monetary System , 2000 .

[51]  Eric Jondeau,et al.  Conditional Dependency of Financial Series: An Application of Copulas , 2001 .

[52]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[53]  Alessio Sancetta,et al.  Bernstein Approximations to the Copula Function and Portfolio Optimization , 2001 .

[54]  C. Genest,et al.  An Extension of Osuna's Model for Stress Caused by Waiting. , 2001, Journal of mathematical psychology.

[55]  Andrew J. Patton,et al.  Estimation of Copula Models for Time Series of Possibly Different Lengths , 2001 .

[56]  E. Luciano,et al.  Value-At-Risk Trade-Off and Capital Allocation with Copulas , 2001 .

[57]  Alexander J. McNeil,et al.  Modelling dependent defaults , 2001 .

[58]  D. Rivers,et al.  Model Selection Tests for Nonlinear Dynamic Models , 2002 .

[59]  E. Luciano,et al.  Bivariate option pricing with copulas , 2002 .

[60]  Eric Bouyé,et al.  Investigating Dynamic Dependence Using Copulae , 2002 .

[61]  Andrew J. Patton On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation , 2002 .

[62]  O. Scaillet,et al.  Nonparametric Estimation of Copulas for Time Series , 2002 .

[63]  J. Rosenberg Non-Parametric Pricing of Multivariate Contingent Claims , 2003 .

[64]  F. C. Mills Behaviour of Prices. , 2022 .