Experimental and neoclassical electron heat transport in the LMFP regime for the stellarators W7‐A, L‐2, and W7‐AS

The electron energy balance is analyzed for equivalent low‐density electron cyclotron resonance heated (ECRH) discharges with highly peaked central power deposition in the stellarators W7‐A [Plasma Phys. Controlled Fusion 28, 43 (1986)], L‐2 [Proceedings of the 6th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Berchtesgaden, 1976 (International Atomic Energy Agency, Vienna, 1977), Vol. 2, p. 115] and W7‐AS [Proceedings of the 9th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Baltimore, 1982 (International Atomic Energy Agency, Vienna, 1983), Vol. 3, p. 141]. Within the long mean‐free path (LMFP) collisionality regime in stellarators, the neoclassical electron heat diffusivity χe can overcome the ‘‘anomalous’’ one. The neoclassical transport coefficients are calculated by the dkes code (Drift Kinetic Equation Solver) [Phys. Fluids 29, 2951 (1986); Phys. Fluids B 1, 563 (1989)] for these configurations, and the particle and energy flu...

[1]  H. E. Mynick,et al.  Effect of the ambipolar potential on stellarator confinement , 1983 .

[2]  J. Lyon,et al.  Transport analysis of stellarator reactors , 1991 .

[3]  Ker-Chung Shaing,et al.  Stability of the radial electric field in a nonaxisymmetric torus , 1984 .

[4]  F. Sardei,et al.  Confinement studies on the Wendelstein VII-AS stellarator , 1990 .

[5]  L. Kovrizhnykh,et al.  Neoclassical theory of transport processes in toroidal magnetic confinement systems, with emphasis on non-axisymmetric configurations , 1984 .

[6]  H. Sanuki,et al.  Electric field profile of a Compact Helical System Heliotron/Torsatron plasma with tangential neutral beam injection , 1991 .

[7]  Daniel E. Hastings,et al.  The ambipolar electric field in stellarators , 1985 .

[8]  K. Shaing,et al.  Neoclassical transport in a multiple‐helicity torsatron in the low‐collisionality (1/ν) regime , 1983 .

[9]  T. K. Chu,et al.  Class of model stellarator fields with enhanced confinement , 1982 .

[10]  S. Hirshman,et al.  Variational bounds for transport coefficients in three-dimensional toroidal plasmas , 1989 .

[11]  Daniel E. Hastings,et al.  A differential equation for the ambipolar electric field in a multiple‐helicity torsatron , 1985 .

[12]  L. Kovrizhnykh The energy confinement time in stellarators , 1984 .

[13]  F. Sardei,et al.  Confinement of stellarator plasmas with neutral beam and RF heating in W VII-A , 1986 .

[14]  F. Sardei,et al.  Physics and Engineering Design for Wendelstein VII-X , 1990 .

[15]  Petty,et al.  Inward energy transport in tokamak plasmas. , 1992, Physical review letters.

[16]  Georg Kühner,et al.  Electron thermal conductivity from heat wave propagation in Wendelstein 7-AS , 1992 .

[17]  Anthony B. Murphy,et al.  Initial operation of the Wendelstein 7AS advanced stellarator , 1989 .

[18]  Evidence for a local diffusive model of transport in a tokamak , 1992 .

[19]  T. Stringer,et al.  Neoclassical transport in the presence of fluctuations , 1992 .

[20]  E. C. Crume,et al.  Plasma transport coefficients for nonsymmetric toroidal confinement systems , 1986 .

[21]  F. Sardei,et al.  Electron Cyclotron Resonance Heating in the Wendelstein VII-A Stellarator , 1986 .

[22]  Transport Study for Radial Electric Field and Poloidal Ion Flow in Heliotron E , 1991 .