Basic mechanisms and modeling of single-event upset in digital microelectronics

Physical mechanisms responsible for nondestructive single-event effects in digital microelectronics are reviewed, concentrating on silicon MOS devices and integrated circuits. A brief historical overview of single-event effects in space and terrestrial systems is given, and upset mechanisms in dynamic random access memories, static random access memories, and combinational logic are detailed. Techniques for mitigating single-event upset are described, as well as methods for predicting device and circuit single-event response using computer simulations. The impact of technology trends on single-event susceptibility and future areas of concern are explored.

[1]  John A. Zoutendyk,et al.  Single Event Upset Immune Integrated Circuits for Project Galileo , 1985, IEEE Transactions on Nuclear Science.

[2]  R. J. McPartland Circuit simulations of alpha-particle-induced soft errors in MOS dynamic RAMs , 1981 .

[3]  D. S. Walsh,et al.  Single-event upset and snapback in silicon-on-insulator devices and integrated circuits , 2000 .

[4]  Lloyd W. Massengill,et al.  Impact of scaling on soft-error rates in commercial microprocessors , 2002 .

[5]  Jr. Leonard R. Rockett Simulated SEU hardened scaled CMOS SRAM cell design using gated resistors , 1992 .

[6]  E. Normand Single event upset at ground level , 1996 .

[7]  Paul E. Dodd,et al.  Neutron-induced latchup in SRAMs at ground level , 2003, 2003 IEEE International Reliability Physics Symposium Proceedings, 2003. 41st Annual..

[8]  R. R. O'Brien,et al.  A field-funneling effect on the collection of alpha-particle-generated carriers in silicon devices , 1981, IEEE Electron Device Letters.

[9]  T. R. Oldham,et al.  Charge Funneling in N- and P-Type Si Substrates , 1982, IEEE Transactions on Nuclear Science.

[10]  T. J. O'Gorman The effect of cosmic rays on the soft error rate of a DRAM at ground level , 1994 .

[11]  R. Koga,et al.  Experimental and analytical investigation of single event, multiple bit upsets in poly-silicon load, 64 K*1 NMOS SRAMs , 1988 .

[12]  Eugene Normand,et al.  Investigation and Characterization of SEU Effects and Hardening Strategies in Avionics. , 1995 .

[13]  R. L. Woodruff,et al.  Three-dimensional numerical simulation of single event upset of an SRAM cell , 1993 .

[14]  G. R. Srinivasan,et al.  Parameter-free, predictive modeling of single event upsets due to protons, neutrons, and pions in terrestrial cosmic rays , 1994 .

[15]  A. B. Campbell,et al.  Comparison of experimental charge collection waveforms with PISCES calculations , 1991 .

[16]  E. Normand,et al.  Single event upsets in implantable cardioverter defibrillators , 1998 .

[17]  T. Toyabe,et al.  The scaling law of alpha-particle induced soft errors for VLSI's , 1986, 1986 International Electron Devices Meeting.

[18]  Tomihiro Kamiya,et al.  Single-event current transients induced by high energy ion microbeams , 1993 .

[19]  C. Detcheverry,et al.  SEU critical charge and sensitive area in a submicron CMOS technology , 1997 .

[20]  H.T. Weaver,et al.  RAM cell recovery mechanisms following high-energy ion strikes , 1987, IEEE Electron Device Letters.

[21]  D. S. Walsh,et al.  Charge collection in SOI capacitors and circuits and its effect on SEU hardness , 2002 .

[22]  H. L. Grubin,et al.  Simulation of Charge Collection in a Multilayer Device , 1985, IEEE Transactions on Nuclear Science.

[23]  V. Ferlet-Cavrois,et al.  Comparison of the sensitivity to heavy ions of SRAM's in different SIMOX technologies , 1994, IEEE Electron Device Letters.

[24]  T. Calin,et al.  Upset hardened memory design for submicron CMOS technology , 1996 .

[25]  T. May Soft Errors in VLSI: Present and Future , 1979 .

[26]  S. M. Marcus,et al.  Minimum Size and Maximum Packing Density of Nonredundant Semiconductor Devices , 1962, Proceedings of the IRE.

[27]  P. Dodd,et al.  Various SEU conditions in SRAM studied by 3-D device simulation , 2001 .

[28]  J. Choma,et al.  Single Event Upset in SOS Integrated Circuits , 1987, IEEE Transactions on Nuclear Science.

[29]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[30]  David Burnett,et al.  Soft-error-rate improvement in advanced BiCMOS SRAMs , 1993, 31st Annual Proceedings Reliability Physics 1993.

[31]  M. Baze,et al.  Comparison of error rates in combinational and sequential logic , 1997 .

[32]  G. E. Davis,et al.  Transient Radiation Effects in SOI Memories , 1985, IEEE Transactions on Nuclear Science.

[33]  P. J. McNulty,et al.  Single-event effects experienced by astronauts and microelectronic circuits flown in space , 1996 .

[34]  J. L. Wirth,et al.  The Analysis of Radiation Effects in Semiconductor Junction Devices , 1967 .

[35]  Lloyd W. Massengill,et al.  Analysis of the influence of MOS device geometry on predicted SEU cross sections , 1999 .

[36]  R. Koga,et al.  Single Event Error Immune CMOS RAM , 1982, IEEE Transactions on Nuclear Science.

[37]  J. Canaris,et al.  Design And Testing Of SEU/ SEL Immune Memory And Logic Circuits In A Commercial Cmos Process , 1993, 1993 IEEE Radiation Effects Data Workshop.

[38]  Larry D. Edmonds,et al.  Charge collection from ion tracks in simple EPI diodes , 1997 .

[39]  C. Lage,et al.  Soft error rate and stored charge requirements in advanced high-density SRAMs , 1993, Proceedings of IEEE International Electron Devices Meeting.

[40]  Lloyd W. Massengill,et al.  Body tie placement in CMOS/SOI digital circuits for transient radiation environments , 1991 .

[41]  A. B. Campbell,et al.  Analysis of multiple bit upsets (MBU) in CMOS SRAM , 1996 .

[42]  E. Petersen,et al.  Soft Errors Due to Protons in the Radiation Belt , 1981, IEEE Transactions on Nuclear Science.

[43]  R. Koga,et al.  Single-word multiple-bit upsets in static random access devices , 1993 .

[44]  Lloyd W. Massengill,et al.  Cosmic and terrestrial single-event radiation effects in dynamic random access memories , 1996 .

[45]  Lloyd W. Massengill,et al.  Single event mirroring and DRAM sense amplifier designs for improved single-event-upset performance , 1994 .

[46]  D. Binder,et al.  Satellite Anomalies from Galactic Cosmic Rays , 1975, IEEE Transactions on Nuclear Science.

[47]  Larry D. Edmonds A time-dependent charge-collection efficiency for diffusion , 2001 .

[48]  Sherra E. Diehl,et al.  An Improved Single Event Resistive-Hardening Technique for CMOS Static RAMS , 1986, IEEE Transactions on Nuclear Science.

[49]  Kiyoo Itoh,et al.  A cross section of alpha -particle-induced soft-error phenomena in VLSIs , 1989 .

[50]  Paul E. Dodd,et al.  Device simulation of charge collection and single-event upset , 1996 .

[51]  H. T. Weaver,et al.  Soft error protection using asymmetric response latches , 1991 .

[52]  J. Zoutendyk,et al.  Characterization of multiple-bit errors from single-ion tracks in integrated circuits , 1989 .

[53]  A. Ochoa,et al.  A proposed new structure for SEU immunity in SRAM employing drain resistance , 1987, IEEE Electron Device Letters.

[54]  B. D. Shafer,et al.  The design of radiation-hardened ICs for space: a compendium of approaches , 1988, Proc. IEEE.

[55]  Barney Lee Doyle,et al.  Time-resolved ion beam induced charge collection (TRIBICC) in micro-electronics , 1998 .

[56]  M. Y. Hsiao,et al.  A System Solution to the Memory Soft Error Problem , 1980, IBM J. Res. Dev..

[57]  R. Koga,et al.  SEE sensitivity determination of high-density DRAMs with limited-range heavy ions , 2000, 2001 IEEE Radiation Effects Data Workshop. NSREC 2001. Workshop Record. Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No.01TH8588).

[58]  S. Whitaker,et al.  Low power SEU immune CMOS memory circuits , 1992 .

[59]  Robert Ecoffet,et al.  SEU response of an entire SRAM cell simulated as one contiguous three dimensional device domain , 1998 .

[60]  Yoshiharu Tosaka,et al.  Measurement and analysis of neutron-induced soft errors in sub-half-micron CMOS circuits , 1998 .

[61]  Chin-Long Chen,et al.  Error-Correcting Codes for Semiconductor Memory Applications: A State-of-the-Art Review , 1984, IBM J. Res. Dev..

[62]  J. A. Zoutendyk,et al.  Experimental Evidence for a New Single-Event Upset (SEU) Mode in a CMOS SRAM Obtained from Model Verification , 1987, IEEE Transactions on Nuclear Science.

[63]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[64]  L. D. Edmonds,et al.  A simple estimate of funneling-assisted charge collection , 1991 .

[65]  J. B. Blake,et al.  On-Orbit Observations of Single Event Upset in Harris HM-6508 1K RAMS , 1986, IEEE Transactions on Nuclear Science.

[66]  Jr. Leonard R. Rockett An SEU-hardened CMOS data latch design , 1988 .

[67]  Wojtek Hajdas,et al.  Low energy proton induced SEE in memories , 1997 .

[68]  E. Normand,et al.  Neutron-induced single event burnout in high voltage electronics , 1997 .

[69]  Lloyd W. Massengill,et al.  Single-event-induced charge collection and direct channel conduction in submicron MOSFETs , 1994 .

[70]  R. R. O'Brien,et al.  Collection of charge from alpha-particle tracks in silicon devices , 1983, IEEE Transactions on Electron Devices.

[71]  W. R. Eisenstadt,et al.  CMOS VLSI single event transient characterization , 1989 .

[72]  John Choma,et al.  Mixed-mode PISCES-SPICE coupled circuit and device solver , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[73]  R. Koga,et al.  Permanent single event functional interrupts (SEFIs) in 128- and 256-megabit synchronous dynamic random access memories (SDRAMs) , 2001, 2001 IEEE Radiation Effects Data Workshop. NSREC 2001. Workshop Record. Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No.01TH8588).

[74]  F. W. Sexton,et al.  Critical charge concepts for CMOS SRAMs , 1995 .

[75]  R. K. Treece,et al.  A radiation-hardened 16/32-bit microprocessor , 1989 .

[76]  Larry D. Edmonds,et al.  Electric currents through ion tracks in silicon devices , 1998 .

[77]  H. T. Weaver,et al.  Comparison of 2D Memory SEU Transport Simulation with Experiments , 1985, IEEE Transactions on Nuclear Science.

[78]  T. May,et al.  Alpha-particle-induced soft errors in dynamic memories , 1979, IEEE Transactions on Electron Devices.

[79]  Clive Dyer,et al.  Observations of single-event upsets in non-hardened high-density SRAMs in Sun-synchronous orbit , 1992 .

[80]  J. E. Vinson,et al.  Single Event Upset Rate Predictions for Complex Logic Systems , 1984, IEEE Transactions on Nuclear Science.

[81]  A. E. Waskiewicz,et al.  Experimental and simulation study of the effects of cosmic particles on CMOS/SOS RAMs , 1990 .

[82]  R. Koga,et al.  Scaling studies of CMOS SRAM soft-error tolerances—From 16K to 256K , 1987, 1987 International Electron Devices Meeting.

[83]  J. S. Browning,et al.  An SEU Tolerant Memory Cell Derived from Fundamental Studies of SEU Mechanisms in SRAM , 1987, IEEE Transactions on Nuclear Science.

[84]  John D. Cressler,et al.  A comparison of SEU tolerance in high-speed SiGe HBT digital logic designed with multiple circuit architectures , 2002 .

[85]  Marty R. Shaneyfelt,et al.  Impact of technology trends on SEU in CMOS SRAMs , 1996 .

[86]  E. A. Wolicki,et al.  Single Event Upset of Dynamic Rams by Neutrons and Protons , 1979, IEEE Transactions on Nuclear Science.

[87]  Robert A. Reed,et al.  Charge collection spectroscopy , 1993 .

[88]  D. D. Tang,et al.  A circuit concept for reducing soft-error in high-speed memory cells , 1987, 1987 Symposium on VLSI Circuits.

[89]  Changhong Dai,et al.  Impact of CMOS process scaling and SOI on the soft error rates of logic processes , 2001, 2001 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.01 CH37184).

[90]  P. J. McNulty,et al.  Soft Errors Induced by Energetic Protons , 1979, IEEE Transactions on Nuclear Science.

[91]  J. H. Alexander,et al.  Computerized Model for Response of Transistors to a Pulse of Ionizing Radiation , 1967 .

[92]  K. A. LaBel,et al.  Evidence for angular effects in proton-induced single-event upsets , 2002 .

[93]  H. L. Grubin,et al.  Numerical simulation of charge collection in two- and three-dimensional silicon diodes—a comparison , 1986 .

[94]  E. C. Smith,et al.  Simulation of Cosmic-Ray Induced Soft Errors and Latchup in Integrated-Circuit Computer Memories , 1979, IEEE Transactions on Nuclear Science.

[95]  W. A. Kolasinski,et al.  Cost-effective numerical simulation of SEU , 1988 .

[96]  J. Maiz,et al.  Alpha-SER modeling and simulation for sub-0.25 /spl mu/m CMOS technology , 1999, 1999 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.99CH36325).

[97]  J.A. Seitchik,et al.  IVB-6 alpha-particle-induced charge transfer between closely spaced memory cells , 1985, IEEE Transactions on Electron Devices.

[98]  Simon Verghese,et al.  A Novel CMOS SRAM Feedback Element for SEU Environments , 1987, IEEE Transactions on Nuclear Science.

[99]  P. S. Winokur,et al.  Three-dimensional simulation of charge collection and multiple-bit upset in Si devices , 1994 .

[100]  Jean-Pierre Colinge,et al.  Temporal analysis of SEU in SOI/GAA SRAMs , 1995 .

[101]  L.W. Massengill,et al.  Single-event charge enhancement in SOI devices , 1990, IEEE Electron Device Letters.

[102]  T. Kishimoto,et al.  Soft error susceptibility and immune structures in dynamic random access memories (DRAMs) investigated by nuclear microprobes , 1996 .

[103]  Theodore W. Houston,et al.  An SEU resistant 256 K SOI SRAM , 1992 .

[104]  Z. Hasnain,et al.  Building-in reliability: soft errors-a case study , 1992, 30th Annual Proceedings Reliability Physics 1992.

[105]  M. Alles,et al.  Model for CMOS/SOI single-event vulnerability , 1989 .

[106]  J. Pelloie,et al.  Laser probing of bipolar amplification in 0.25-/spl mu/m MOS/SOI transistors , 2000 .

[107]  O. Musseau Single-event effects in SOI technologies and devices , 1996 .

[108]  N. Leland,et al.  Frequency dependence of soft error rates for sub-micron CMOS technologies , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[109]  A.M. Mohsen,et al.  Alpha-particle-induced charge collection measurements and the effectiveness of a novel p-well protection barrier on VLSI memories , 1985, IEEE Transactions on Electron Devices.

[110]  Ping Yang,et al.  SIERRA: a 3-D device simulator for reliability modeling , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[111]  R. Hokinson,et al.  Historical trend in alpha-particle induced soft error rates of the Alpha/sup TM/ microprocessor , 2001, 2001 IEEE International Reliability Physics Symposium Proceedings. 39th Annual (Cat. No.00CH37167).

[112]  Daniel M. Fleetwood,et al.  Implementing QML for radiation hardness assurance , 1990 .

[113]  H. T. Weaver Soft error stability of p-well versus n-well CMOS latches derived from 2-D transient simulations , 1988, Technical Digest., International Electron Devices Meeting.

[114]  Robert B. Hammond,et al.  An Approach to Measure Ultrafast-Funneling-Current Transients , 1986, IEEE Transactions on Nuclear Science.

[115]  G. R. Srinivasan,et al.  Soft-error Monte Carlo modeling program, SEMM , 1996, IBM J. Res. Dev..

[116]  J. C. Pickel,et al.  Cosmic Ray Induced in MOS Memory Cells , 1978, IEEE Transactions on Nuclear Science.

[117]  Kartikeya Mayaram,et al.  Transient three-dimensional mixed-level circuit and device simulation: algorithms and applications , 1991, 1991 IEEE International Conference on Computer-Aided Design Digest of Technical Papers.

[118]  T. Kishimoto,et al.  Control of Carrier Collection Efficiency in n+p Diode with Retrograde Well and Epitaxial Layers , 1997 .

[119]  G. C. Messenger,et al.  Collection of Charge on Junction Nodes from Ion Tracks , 1982, IEEE Transactions on Nuclear Science.

[120]  H. Kawamoto,et al.  A Soft Error Rate Model for MOS Dynamic RAM's , 1982, IEEE Journal of Solid-State Circuits.

[121]  P. J. McNulty,et al.  Determination of SEU parameters of NMOS and CMOS SRAMs , 1991 .

[122]  D. S. Walsh,et al.  SEU-sensitive volumes in bulk and SOI SRAMs from first-principles calculations and experiments , 2001 .

[123]  M. Baze,et al.  A digital CMOS design technique for SEU hardening , 2000 .

[124]  T. Ishizaki,et al.  Soft errors in SRAM devices induced by high energy neutrons, thermal neutrons and alpha particles , 2002, Digest. International Electron Devices Meeting,.

[125]  Hans P. Muhlfeld,et al.  Cosmic ray soft error rates of 16-Mb DRAM memory chips , 1998, IEEE J. Solid State Circuits.

[126]  N.C.C. Lu,et al.  A new failure mode of radiation-induced soft errors in dynamic memories , 1988, IEEE Electron Device Letters.

[127]  Kartikeya Mayaram,et al.  Algorithms for transient three-dimensional mixed-level circuit and device simulation , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[128]  S. Doyle,et al.  The RAD750/sup TM/-a radiation hardened PowerPC/sup TM/ processor for high performance spaceborne applications , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[129]  H.T. Weaver,et al.  Memory SEU simulations using 2-D transport calculations , 1985, IEEE Electron Device Letters.

[130]  John A. Zoutendyk,et al.  Investigation of single-event upset (SEU) in an advanced bipolar process , 1988 .

[131]  P. Eaton,et al.  Soft error rate mitigation techniques for modern microcircuits , 2002, 2002 IEEE International Reliability Physics Symposium. Proceedings. 40th Annual (Cat. No.02CH37320).

[132]  Federico Faccio,et al.  Single event effects in static and dynamic registers in a 0.25 /spl mu/m CMOS technology , 1999 .

[133]  J.A. Seitchik,et al.  Single event charge collection modeling in CMOS multi-junctions structure , 1986, 1986 International Electron Devices Meeting.

[134]  P. M. O'Neill,et al.  Single event upsets for Space Shuttle flights of new general purpose computer memory devices , 1994 .

[135]  J. S. Browning,et al.  Processing Enhanced SEU Tolerance in High Density SRAMs , 1987, IEEE Transactions on Nuclear Science.

[136]  E. M. Buturla,et al.  Finite-element analysis of semiconductor devices: the FIELDAY program , 1981 .

[137]  Raoul Velazco,et al.  Two CMOS memory cells suitable for the design of SEU-tolerant VLSI circuits , 1994 .

[138]  M. Baze,et al.  Attenuation of single event induced pulses in CMOS combinational logic , 1997 .

[139]  N. van Vonno,et al.  A 256 K static random-access memory implemented in silicon-on-insulator technology , 1993, RADECS 93. Second European Conference on Radiation and its Effects on Components and Systems (Cat. No.93TH0616-3).

[140]  S. Satoh,et al.  CMOS-SRAM soft-error simulation system , 1994, Proceedings of International Workshop on Numerical Modeling of processes and Devices for Integrated Circuits: NUPAD V.

[141]  R. Koga,et al.  Numerical Simulation of SEU Induced Latch-Up , 1986, IEEE Transactions on Nuclear Science.

[142]  A. B. Campbell,et al.  Implications of the spatial dependence of the single-event-upset threshold in SRAMs measured with a pulsed laser , 1994 .

[143]  Robert C. Baumann,et al.  Neutron-induced 10B fission as a major source of soft errors in high density SRAMs , 2001, Microelectron. Reliab..

[144]  Bharat L. Bhuva,et al.  Analysis of single-event effects in combinational logic-simulation of the AM2901 bitslice processor , 2000 .

[145]  H. T. Weaver,et al.  Two-Dimensional Simulation of Single Event Indujced Bipolar Current in CMOS Structures , 1984, IEEE Transactions on Nuclear Science.

[146]  Bernard J. Roman,et al.  A quadruple well, quadruple polysilicon BiCMOS process for fast 16 Mb SRAM's , 1994 .

[147]  Marty R. Shaneyfelt,et al.  Charge collection and SEU from angled ion strikes , 1997 .

[148]  E. Normand Single-event effects in avionics , 1996 .

[149]  Robert A. Reed,et al.  Implications of angle of incidence in SEU testing of modern circuits , 1994 .

[150]  Wojtek Hajdas,et al.  Direct processes in the energy deposition of protons in silicon , 1996 .

[151]  C. L. Axness,et al.  Mechanisms Leading to Single Event Upset , 1986, IEEE Transactions on Nuclear Science.

[152]  C. L. Axness,et al.  SEU simulation and testing of resistor-hardened D-latches in the SA3300 microprocessor , 1991 .

[153]  Avi Mendelson,et al.  Coming challenges in microarchitecture and architecture , 2001, Proc. IEEE.

[154]  V. R. Rao,et al.  Dynamic Fault Imaging of VLSI Random Logic Devices , 1984, 22nd International Reliability Physics Symposium.

[155]  Frédéric Wrobel,et al.  Incidence of multi-particle events on soft error rates caused by n-Si nuclear reactions , 2000 .

[156]  R. Koga,et al.  Single event functional interrupt (SEFI) sensitivity in microcircuits , 1997, RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294).

[157]  James C. Pickel,et al.  Single Event Upset in Combinatorial and Sequential Current Mode Logic , 1985, IEEE Transactions on Nuclear Science.

[158]  R. Baumann The impact of technology scaling on soft error rate performance and limits to the efficacy of error correction , 2002, Digest. International Electron Devices Meeting,.

[159]  James L. Walsh,et al.  IBM experiments in soft fails in computer electronics (1978-1994) , 1996, IBM J. Res. Dev..

[160]  M. Nakamura,et al.  A novel 0.20 /spl mu/m full CMOS SRAM cell using stacked cross couple with enhanced soft error immunity , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[161]  A. H. Johnston Radiation effects in advanced microelectronics technologies , 1997 .

[162]  R. R. O'Brien,et al.  Dynamics of Charge Collection from Alpha-Particle Tracks in Integrated Circuits , 1981, 19th International Reliability Physics Symposium.

[163]  F. W. Sexton,et al.  Microbeam studies of single-event effects , 1996 .