Weak Solutions to a Parabolic-Elliptic System of Chemotaxis
暂无分享,去创建一个
[1] Takashi Suzuki,et al. Parabolic System of Chemotaxis: Blowup in a Finite and the Infinite Time , 2001 .
[2] J. Mossino,et al. Über einige Extremaleigenschaften der regulären Polyeder und des gleichseitigen Dreiecksgitters , 1948 .
[3] Toshitaka Nagai,et al. Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains , 2001 .
[4] L. Segel,et al. Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.
[5] Atsushi Yagi,et al. NORM BEHAVIOR OF SOLUTIONS TO A PARABOLIC SYSTEM OF CHEMOTAXIS , 1997 .
[6] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .
[7] Haim Brezis,et al. Semi-linear second-order elliptic equations in L 1 , 1973 .
[8] Takashi Suzuki,et al. Chemotactic collapse in a parabolic system of mathematical biology , 2000 .
[9] Takashi Suzuki,et al. Chemotactic collapse in a parabolic-elliptic system of mathematical biology , 1999, Advances in Differential Equations.
[10] C. Ionescu Tulcea,et al. Topics in the Theory of Lifting , 1969 .
[11] M. A. Herrero,et al. A blow-up mechanism for a chemotaxis model , 1997 .
[12] P. Meyer. Probability and potentials , 1966 .
[13] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[14] M. A. Herrero,et al. Singularity patterns in a chemotaxis model , 1996 .