MSE Estimates for Multitaper Spectral Estimation and Off-Grid Compressive Sensing

We obtain estimates for the mean squared error (MSE) for the multitaper spectral estimator and certain compressive acquisition methods for multi-band signals. We confirm a fact discovered by Thomson [Spectrum estimation and harmonic analysis, Proc. IEEE, 1982]: assuming bandwidth <inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> time domain observations, the average of the square of the first <inline-formula> <tex-math notation="LaTeX">$K=\lfloor 2NW\rfloor$ </tex-math></inline-formula> Slepian functions approaches, as <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> grows, an ideal bandpass kernel for the interval <inline-formula> <tex-math notation="LaTeX">$[ -W,W]$ </tex-math></inline-formula>. We provide an analytic proof of this fact and measure the corresponding rate of convergence in <inline-formula> <tex-math notation="LaTeX">$L^{1}$ </tex-math></inline-formula> norm. This validates a heuristic approximation used to control the MSE of the multitaper estimator. The estimates have also consequences for the method of compressive acquisition of multi-band signals introduced by Davenport and Wakin, giving MSE approximation bounds for the dictionary formed by modulation of the critical number of prolates.

[1]  Kurt S. Riedel,et al.  Minimum bias multiple taper spectral estimation , 2018, IEEE Trans. Signal Process..

[2]  Maria Hansson,et al.  Kernels and Multiple Windows for Estimation of the Wigner-Ville Spectrum of Gaussian Locally Stationary Processes , 2007, IEEE Transactions on Signal Processing.

[3]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[4]  Afonso S. Bandeira,et al.  Landau's necessary density conditions for the Hankel transform , 2011, 1111.6963.

[5]  George Gabriel Stokes Mathematical and Physical Papers: 1879: On a Method of detecting Inequalities of unknown periods in a series of Observations. (Note appended to a paper by Prof. B. Stewart and W. Dodgson) , 2009 .

[6]  A. Walden,et al.  Spectral analysis for physical applications : multitaper and conventional univariate techniques , 1996 .

[7]  F. Simons,et al.  Mapping Greenland’s mass loss in space and time , 2012, Proceedings of the National Academy of Sciences.

[8]  H. Helmholtz,et al.  Mathematical and Physical Papers , 1885, Nature.

[9]  Zhizhen Zhao,et al.  Fourier-Bessel rotational invariant eigenimages , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  J. Lakey,et al.  Duration and Bandwidth Limiting: Prolate Functions, Sampling, and Applications , 2011 .

[11]  F. Simons,et al.  Spatiospectral concentration of vector fields on a sphere , 2013, 1306.3201.

[12]  H. Landau,et al.  On Szegö’s eingenvalue distribution theorem and non-Hermitian kernels , 1975 .

[13]  Michael B. Wakin,et al.  Compressive Sensing of Analog Signals Using Discrete Prolate Spheroidal Sequences , 2011, ArXiv.

[14]  AdcockBen,et al.  Generalized Sampling and Infinite-Dimensional Compressed Sensing , 2016 .

[15]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[16]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[17]  D. Donev Prolate Spheroidal Wave Functions , 2017 .

[18]  F. Simons,et al.  Spectral estimation on a sphere in geophysics and cosmology , 2007, 0705.3083.

[19]  Zhihui Zhu,et al.  The fast Slepian transform , 2019, Applied and Computational Harmonic Analysis.

[20]  Murray Rosenblatt,et al.  Prolate spheroidal spectral estimates , 2008 .

[21]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[22]  Weifang Wang,et al.  Spectrum sensing in cognitive radio , 2016 .

[23]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[24]  D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .

[25]  J. Benedetto Harmonic analysis and spectral estimation , 1983 .

[26]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[27]  Bruno Torrésani,et al.  Time-frequency and time-scale analysis of deformed stationary processes, with application to non-stationary sound modeling , 2015, ArXiv.

[28]  H. Landau Sampling, data transmission, and the Nyquist rate , 1967 .

[29]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .

[30]  Mark A. Wieczorek,et al.  Spatiospectral Concentration on a Sphere , 2004, SIAM Rev..

[31]  Simon Haykin,et al.  Cognitive radio: brain-empowered wireless communications , 2005, IEEE Journal on Selected Areas in Communications.

[32]  Gerald Matz,et al.  Time-frequency formulation, design, and implementation of time-varying optimal filters for signal estimation , 2000, IEEE Trans. Signal Process..

[33]  K. Grōchenig,et al.  On accumulated spectrograms , 2014, 1404.7713.

[34]  Donald B. Percival,et al.  The variance of multitaper spectrum estimates for real Gaussian processes , 1994, IEEE Trans. Signal Process..

[35]  Pavel Zheltov,et al.  Identification of stochastic operators , 2015, ArXiv.

[36]  J. Lakey,et al.  Duration and Bandwidth Limiting , 2012 .

[37]  Richard G. Baraniuk,et al.  Multiple Window Time Varying Spectrum Estimation , 2000 .

[38]  Thomas P. Bronez,et al.  On the performance advantage of multitaper spectral analysis , 1992, IEEE Trans. Signal Process..

[39]  Arthur Schuster,et al.  On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena , 1898 .

[40]  Heidi Cullen,et al.  A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates , 1997 .

[41]  Patrick Flandrin,et al.  Wigner-Ville spectral analysis of nonstationary processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[42]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[43]  Zhihui Zhu,et al.  Approximating Sampled Sinusoids and Multiband Signals Using Multiband Modulated DPSS Dictionaries , 2015, Journal of Fourier Analysis and Applications.

[44]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .

[45]  Sofia C. Olhede,et al.  Generalized Morse wavelets , 2002, IEEE Trans. Signal Process..

[46]  J. Lakey,et al.  Frame properties of shifts of prolate spheroidal wave functions , 2015 .

[47]  Ben Adcock,et al.  Generalized Sampling and Infinite-Dimensional Compressed Sensing , 2016, Found. Comput. Math..