Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions.

[1]  G. Niebur,et al.  High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. , 2000, Journal of biomechanics.

[2]  D Vashishth,et al.  In vivo diffuse damage in human vertebral trabecular bone. , 2000, Bone.

[3]  G. Niebur,et al.  Convergence behavior of high-resolution finite element models of trabecular bone. , 1999, Journal of biomechanical engineering.

[4]  T M Keaveny,et al.  A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone. , 1999, Journal of biomechanical engineering.

[5]  T. Keaveny,et al.  Uniaxial yield strains for bovine trabecular bone are isotropic and asymmetric , 1999, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[6]  R Huiskes,et al.  The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. , 1999, Journal of biomechanics.

[7]  C H Turner,et al.  Three rules for bone adaptation to mechanical stimuli. , 1998, Bone.

[8]  B. Manthey,et al.  Three-dimensional confocal images of microdamage in cancellous bone. , 1998, Bone.

[9]  J. Kinney,et al.  Numerical errors and uncertainties in finite-element modeling of trabecular bone. , 1998, Journal of biomechanics.

[10]  M E Levenston,et al.  An energy dissipation-based model for damage stimulated bone adaptation. , 1998, Journal of biomechanics.

[11]  N L Fazzalari,et al.  Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. , 1998, Bone.

[12]  W. Ambrosius,et al.  Does microdamage accumulation affect the mechanical properties of bone? , 1998, Journal of biomechanics.

[13]  Ph. D Tony M. Keaveny Mechanistic Approaches to Analysis of Trabecular Bone , 1998 .

[14]  S. Cowin Remarks on the paper entitled 'Fabric and elastic principal directions of cancellous bone are closely related'. , 1997, Journal of biomechanics.

[15]  T. Keaveny,et al.  Dependence of trabecular damage on mechanical strain , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[16]  L. Gibson,et al.  Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. , 1997, Bone.

[17]  C. Simmons,et al.  Method‐Based Differences in the Automated Analysis of the Three‐Dimensional Morphology of Trabecular Bone , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[18]  R. Huiskes,et al.  Fabric and elastic principal directions of cancellous bone are closely related. , 1997, Journal of biomechanics.

[19]  T M Keaveny,et al.  The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. , 1996, Journal of biomechanics.

[20]  D P Fyhrie,et al.  In vivo trabecular microcracks in human vertebral bone. , 1996, Bone.

[21]  B. Martin,et al.  Mathematical model for repair of fatigue damage and stress fracture in osteonal bone , 1995, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[22]  W C Hayes,et al.  Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. , 1994, Journal of biomechanics.

[23]  P J Prendergast,et al.  Prediction of bone adaptation using damage accumulation. , 1994, Journal of biomechanics.

[24]  W C Hayes,et al.  Finite element modeling of damage accumulation in trabecular bone under cyclic loading. , 1994, Journal of biomechanics.

[25]  D B Burr,et al.  Increased intracortical remodeling following fatigue damage. , 1993, Bone.

[26]  S C Cowin,et al.  On the relationship between the orthotropic Young's moduli and fabric. , 1992, Journal of biomechanics.

[27]  B. Martin,et al.  A theory of fatigue damage accumulation and repair in cortical bone , 1992, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[28]  C. Turner,et al.  Yield behavior of bovine cancellous bone. , 1989, Journal of biomechanical engineering.

[29]  R M Rose,et al.  A structural model for the mechanical behavior of trabecular bone. , 1973, Journal of biomechanics.

[30]  Hwj Rik Huiskes,et al.  Prediction of trabecular bone failure parameters using a tissue failure criterion and muFE analysis , 2000 .

[31]  D. Fyhrie,et al.  Predicting damage in human vertebral cancellous bone using large-scale linear finite element models , 1996 .

[32]  D. Fyhrie,et al.  Prediction of human vertebral cancellous bone strength using non-linear, anatomically accurate, large-scale, finite element analysis , 1995 .

[33]  D P Fyhrie,et al.  Failure mechanisms in human vertebral cancellous bone. , 1994, Bone.

[34]  W. Fan,et al.  On phenomenological anisotropic failure criteria , 1987 .

[35]  D. Burr,et al.  A hypothetical mechanism for the stimulation of osteonal remodelling by fatigue damage. , 1982, Journal of biomechanics.

[36]  M Martens,et al.  Aging of bone tissue: mechanical properties. , 1976, The Journal of bone and joint surgery. American volume.

[37]  A. Burstein,et al.  The elastic and ultimate properties of compact bone tissue. , 1975, Journal of biomechanics.