Sequential approximation of parameter sets for identification with parametric and nonparametric uncertainty

In this paper the problem of approximation of the feasible parameter set for robust identification of a system with parametric and nonparametric uncertainty is considered. A set membership setting is considered where the overall system model is given by a parametric model linear in the unknown parameters and a nonparametric part defined in terms of l/sub 1/ or H/sub /spl infin// norm bounds. A recursive procedure providing an approximation of the parameter set of interest through parallelotopes is presented and an efficient algorithm is proposed. Its computational complexity compares favourably with the more commonly used ellipsoidic approximation schemes. Preliminary numerical results are also reported on some simulation experiments conducted in order to assess the performance of the proposed algorithm.<<ETX>>

[1]  Sandor M. Veres,et al.  Predictive self-tuning control by parameter bounding and worst-case design , 1993, Autom..

[2]  Gustavo Belforte,et al.  Parameter estimation algorithms for a set-membership description of uncertainty , 1990, Autom..

[3]  J. P. Norton,et al.  Identification and application of bounded-parameter models , 1985, Autom..

[4]  E. Walter,et al.  Estimation of parameter bounds from bounded-error data: a survey , 1990 .

[5]  L. Ljung,et al.  Hard frequency-domain model error bounds from least-squares like identification techniques , 1992 .

[6]  Stephen P. Boyd,et al.  Identification of Systems with Parametric and Nonparametric Uncertainty , 1990, 1990 American Control Conference.

[7]  Antonio Vicino,et al.  Adaptive Approximation of Uncertainty Sets for Linear Regression Models , 1993 .

[8]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[9]  Stephen P. Boyd,et al.  Set-membership identification of systems with parametric and nonparametric uncertainty , 1992 .

[10]  P. Khargonekar,et al.  Linear and nonlinear algorithms for identification in H/sub infinity / with error bounds , 1992 .

[11]  Clas A. Jacobson Control Oriented System Identification , 1993 .

[12]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[13]  Carl N. Nett,et al.  Control oriented system identification: a worst-case/deterministic approach in H/sub infinity / , 1991 .

[14]  M. Milanese,et al.  Optimal finite-sample experiment design in worst case l/sub 1/ system identification , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[15]  P. Khargonekar,et al.  Linear and nonlinear algorithms for identification in H∞ with error bounds , 1991, 1991 American Control Conference.

[16]  R. Younce,et al.  Identification with non-parametric uncertainty , 1990, IEEE International Symposium on Circuits and Systems.