Consequences for Circuit Design and Case Studies

The previous chapters introduced various methods to analyze the influence of variations of the manufacturing process on the performance of devices and circuits. These methods can be applied to evaluate designs for manufacturability. Variations imply negative effects in most cases that shall be reduced. However, there exist also applications where the variations bring an advantage into the design process. The consequences of both aspects regarding special design requirements will be figured out in this chapter.

[1]  Mototsugu Hamada,et al.  A process variation compensation scheme using cell-based forward body-biasing circuits usable for 1.2V design , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[2]  Andrzej J. Strojwas,et al.  Design methodology for IC manufacturability based on regular logic-bricks , 2005, Proceedings. 42nd Design Automation Conference, 2005..

[3]  Josep Torrellas,et al.  Uncorq: Unconstrained Snoop Request Delivery in Embedded-Ring Multiprocessors , 2007, 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007).

[4]  G. Ono,et al.  A 1000-MIPS/W microprocessor using speed adaptive threshold-voltage CMOS with forward bias , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[5]  Masayuki Miyazaki,et al.  Threshold-voltage balance for minimum supply operation [LV CMOS chips] , 2003, IEEE J. Solid State Circuits.

[6]  James Tschanz,et al.  Parameter variations and impact on circuits and microarchitecture , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[7]  Thomas F. Wenisch,et al.  SimFlex: a fast, accurate, flexible full-system simulation framework for performance evaluation of server architecture , 2004, PERV.

[8]  Alfred Kwok-Kit Wong,et al.  Resolution enhancement techniques in optical lithography , 2001 .

[9]  Yu Cao,et al.  New Generation of Predictive Technology Model for Sub-45 nm Early Design Exploration , 2006, IEEE Transactions on Electron Devices.

[10]  Kevin Skadron,et al.  Temperature-aware microarchitecture , 2003, ISCA '03.

[11]  Nikhil Bansal On the average sojourn time under M/M/1/SRPT , 2003, PERV.

[12]  James D. Meindl,et al.  Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration , 2002, IEEE J. Solid State Circuits.

[13]  Reimund Wittmann,et al.  Statistical averaging based linearity optimization for resistor string DAC architectures in nanoscale processes , 2008, 2008 IEEE International SOC Conference.

[14]  Behzad Razavi,et al.  Design of Analog CMOS Integrated Circuits , 1999 .

[15]  Ching-Te Chuang,et al.  On-Chip Process Variation Detection Using Slew-Rate Monitoring Circuit , 2008, 21st International Conference on VLSI Design (VLSID 2008).

[16]  Lawrence T. Clark,et al.  An embedded 32-b microprocessor core for low-power and high-performance applications , 2001 .

[17]  T. Karnik,et al.  Area-efficient linear regulator with ultra-fast load regulation , 2005, IEEE Journal of Solid-State Circuits.

[18]  David M. Brooks,et al.  Mitigating the Impact of Process Variations on Processor Register Files and Execution Units , 2006, 2006 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06).

[19]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[20]  S. Narendra,et al.  1.1 V 1 GHz communications router with on-chip body bias in 150 nm CMOS , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[21]  Diana Marculescu,et al.  Variation-aware dynamic voltage/frequency scaling , 2009, 2009 IEEE 15th International Symposium on High Performance Computer Architecture.

[22]  Josep Torrellas,et al.  Mitigating Parameter Variation with Dynamic Fine-Grain Body Biasing , 2007, 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007).

[23]  D. Hinkley On the ratio of two correlated normal random variables , 1969 .

[24]  Vivek De,et al.  Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[25]  T. Sakurai,et al.  Self-adjusting threshold-voltage scheme (SATS) for low-voltage high-speed operation , 1994, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '94.

[26]  John R Abelson,et al.  An amorphous silicon thin film transistor fabricated at 125 °C by dc reactive magnetron sputtering , 1997 .

[27]  Yu Cao,et al.  New generation of predictive technology model for sub-45nm design exploration , 2006, 7th International Symposium on Quality Electronic Design (ISQED'06).

[28]  S. Narendra,et al.  Forward body bias for microprocessors in 130nm technology generation and beyond , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[29]  Josep Torrellas,et al.  ReCycle:: pipeline adaptation to tolerate process variation , 2007, ISCA '07.