Modeling and simulation of the diffusive transport in a nanoscale Double-Gate MOSFET
暂无分享,去创建一个
[1] Ansgar Jüngel,et al. Convergent semidiscretization of a nonlinear fourth order parabolic system , 2003 .
[2] Naoufel Ben Abdallah,et al. Diffusion Approximation and Homogenization of the Semiconductor Boltzmann Equation , 2005, Multiscale Model. Simul..
[3] F. Poupaud,et al. Diffusion approximation of the linear semiconductor Boltzmann equation : analysis of boundary layers , 1991 .
[4] M. S. Mock,et al. Analysis of mathematical models of semiconductors devices , 1983 .
[5] C. Schmeiser,et al. Semiconductor equations , 1990 .
[6] N. Abdallah,et al. Diffusion approximation for the one dimensional Boltzmann-Poisson system , 2004 .
[7] Mouis,et al. Simulation schemes in 2D nanoscale MOSFET's: WKB based method , 2004 .
[8] H. Gummel,et al. Large-signal analysis of a silicon Read diode oscillator , 1969 .
[9] R. Sacco,et al. Numerical simulation of tunneling effects in nanoscale semiconductor devices using quantum corrected drift-diffusion models , 2006 .
[10] D. Ferry,et al. Transport in nanostructures , 1999 .
[11] G. Baccarani,et al. A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects , 1999 .
[12] J. Pöschel,et al. Inverse spectral theory , 1986 .
[13] Florian Méhats,et al. Numerical approximation of a quantum drift-diffusion model , 2004 .
[14] F. Nier. A Stationary Schrödinger-Poisson System Arising from the Modelling of Electronic Devices , 1990 .
[15] François Golse,et al. Kinetic equations and asympotic theory , 2000 .
[16] S. Selberherr. Analysis and simulation of semiconductor devices , 1984 .
[17] Giuseppe Iannaccone,et al. Effective Bohm Quantum Potential for device simulators based on drift-diffusion and energy transport , 2004 .
[18] T. Grasser,et al. Failure of moments-based transport models in nanoscale devices near equilibrium , 2005, IEEE Transactions on Electron Devices.
[19] Geurts,et al. Failure of extended-moment-equation approaches to describe ballistic transport in submicrometer structures. , 1992, Physical review. B, Condensed matter.
[20] B. Zimmermann,et al. Finite element approximation of electrostatic potential in one dimensional multilayer structures with quantized electronic charge , 2005, Computing.
[21] Pierre Degond,et al. Quantum Energy-Transport and Drift-Diffusion Models , 2005 .
[22] F. Balestra,et al. Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance , 1987, IEEE Electron Device Letters.
[23] Andrea L. Lacaita,et al. Quantum-corrected drift-diffusion models for transport in semiconductor devices , 2005 .
[24] Nicolas Vauchelet,et al. DIFFUSIVE TRANSPORT OF PARTIALLY QUANTIZED PARTICLES: EXISTENCE, UNIQUENESS AND LONG-TIME BEHAVIOUR , 2006, Proceedings of the Edinburgh Mathematical Society.
[25] G. Iafrate,et al. Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.
[26] H. Gummel. A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .
[27] Kevin F. Brennan,et al. Quantum Semiconductor Structures , 1992 .
[28] Eric Polizzi,et al. Subband decomposition approach for the simulation of quantum electron transport in nanostructures , 2005 .
[29] F. Poupaud,et al. Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi–Dirac , 1992 .
[30] K. Seeger,et al. Semiconductor Physics: An Introduction , 1973 .
[31] E. Polizzi,et al. Simulation of 2D quantum transport in ultrashort DG-MOSFETs : a fast algorithm using subbands , 2003, International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003..
[32] A. Pirovano,et al. Two-dimensional quantum effects in nanoscale MOSFETs , 2002 .
[33] J. H. Davies,et al. The physics of low-dimensional semiconductors , 1997 .