Modeling and simulation of the diffusive transport in a nanoscale Double-Gate MOSFET

In this work we present the mathematical modeling and the simulation of the diffusive transport of an electron gas confined in a nanostructure. A coupled quantum-classical system is considered, where the coupling occurs in the momentum variable: the electrons are like point particles in the direction parallel to the gas, while they behave like waves in the transverse direction. A drift-diffusion description in the transport direction is obtained thanks to an asymptotic limit of the Boltzmann transport equation for confined electrons. The system is used to model the transport of charged carriers in a nanoscale Double-Gate MOSFET. Simulations of transport in such a device are presented.

[1]  Ansgar Jüngel,et al.  Convergent semidiscretization of a nonlinear fourth order parabolic system , 2003 .

[2]  Naoufel Ben Abdallah,et al.  Diffusion Approximation and Homogenization of the Semiconductor Boltzmann Equation , 2005, Multiscale Model. Simul..

[3]  F. Poupaud,et al.  Diffusion approximation of the linear semiconductor Boltzmann equation : analysis of boundary layers , 1991 .

[4]  M. S. Mock,et al.  Analysis of mathematical models of semiconductors devices , 1983 .

[5]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[6]  N. Abdallah,et al.  Diffusion approximation for the one dimensional Boltzmann-Poisson system , 2004 .

[7]  Mouis,et al.  Simulation schemes in 2D nanoscale MOSFET's: WKB based method , 2004 .

[8]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[9]  R. Sacco,et al.  Numerical simulation of tunneling effects in nanoscale semiconductor devices using quantum corrected drift-diffusion models , 2006 .

[10]  D. Ferry,et al.  Transport in nanostructures , 1999 .

[11]  G. Baccarani,et al.  A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects , 1999 .

[12]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[13]  Florian Méhats,et al.  Numerical approximation of a quantum drift-diffusion model , 2004 .

[14]  F. Nier A Stationary Schrödinger-Poisson System Arising from the Modelling of Electronic Devices , 1990 .

[15]  François Golse,et al.  Kinetic equations and asympotic theory , 2000 .

[16]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[17]  Giuseppe Iannaccone,et al.  Effective Bohm Quantum Potential for device simulators based on drift-diffusion and energy transport , 2004 .

[18]  T. Grasser,et al.  Failure of moments-based transport models in nanoscale devices near equilibrium , 2005, IEEE Transactions on Electron Devices.

[19]  Geurts,et al.  Failure of extended-moment-equation approaches to describe ballistic transport in submicrometer structures. , 1992, Physical review. B, Condensed matter.

[20]  B. Zimmermann,et al.  Finite element approximation of electrostatic potential in one dimensional multilayer structures with quantized electronic charge , 2005, Computing.

[21]  Pierre Degond,et al.  Quantum Energy-Transport and Drift-Diffusion Models , 2005 .

[22]  F. Balestra,et al.  Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance , 1987, IEEE Electron Device Letters.

[23]  Andrea L. Lacaita,et al.  Quantum-corrected drift-diffusion models for transport in semiconductor devices , 2005 .

[24]  Nicolas Vauchelet,et al.  DIFFUSIVE TRANSPORT OF PARTIALLY QUANTIZED PARTICLES: EXISTENCE, UNIQUENESS AND LONG-TIME BEHAVIOUR , 2006, Proceedings of the Edinburgh Mathematical Society.

[25]  G. Iafrate,et al.  Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.

[26]  H. Gummel A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .

[27]  Kevin F. Brennan,et al.  Quantum Semiconductor Structures , 1992 .

[28]  Eric Polizzi,et al.  Subband decomposition approach for the simulation of quantum electron transport in nanostructures , 2005 .

[29]  F. Poupaud,et al.  Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi–Dirac , 1992 .

[30]  K. Seeger,et al.  Semiconductor Physics: An Introduction , 1973 .

[31]  E. Polizzi,et al.  Simulation of 2D quantum transport in ultrashort DG-MOSFETs : a fast algorithm using subbands , 2003, International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003..

[32]  A. Pirovano,et al.  Two-dimensional quantum effects in nanoscale MOSFETs , 2002 .

[33]  J. H. Davies,et al.  The physics of low-dimensional semiconductors , 1997 .