How to Use Type II InAs/GaSb Superlattice Structure to Reach Detection Wavelength of 2–3 $\mu{\rm m}$

The photoluminescence (PL) peak of an InAs/GaSb superlattice (SL) structure is found to be shifted from 5.8 to 4.0 <formula formulatype="inline"><tex Notation="TeX">$\mu{\rm m}$</tex></formula> at 77 K, when the growth temperature is lowered from 380 to 340<formula formulatype="inline"><tex Notation="TeX">$^{\circ}{\rm C}$</tex></formula>. The PL peak shift is related to In intermixing, thus some SL structures cannot reach a detection wavelength <formula formulatype="inline"> <tex Notation="TeX">${<}{\rm 3}~\mu{\rm m}$</tex></formula>. Increasing the GaSb layer thickness in the SL structure is an effective way to reach a detection wavelength of 2–3 <formula formulatype="inline"><tex Notation="TeX">$\mu{\rm m}$</tex></formula>. A p-i-n detector with a 50% cutoff wavelength at 2.56 <formula formulatype="inline"><tex Notation="TeX">$\mu{\rm m}$</tex></formula> at 77 K is demonstrated.

[1]  Elena Plis,et al.  Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers , 2010 .

[2]  Christoph H. Grein,et al.  Theoretical performance of very long wavelength InAs/InxGa1−xSb superlattice based infrared detectors , 1994 .

[3]  S. Chuang,et al.  Midinfrared type-II InAs∕GaSb superlattice photodiodes toward room temperature operation , 2008 .

[4]  Hooman Mohseni,et al.  Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices , 1998 .

[5]  Manijeh Razeghi,et al.  Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices , 2012 .

[6]  Kwong-Kit Choi,et al.  The Physics of Quantum Well Infrared Photodetectors , 1997 .

[7]  W. Lu,et al.  Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer , 2006 .

[8]  Kai Cui,et al.  High Structural Quality of Type II InAs/GaSb Superlattices for Very Long Wavelength Infrared Detection by Interface Control , 2012, IEEE Journal of Quantum Electronics.

[9]  Bruno Ullrich,et al.  Short-period InAs∕GaSb type-II superlattices for mid-infrared detectors , 2005 .

[10]  Weiguo Sun,et al.  InAs/GaSb superlattices for photodetection in short wavelength infrared range , 2009 .

[11]  Jonathon T. Olesberg,et al.  MBE-grown high-efficiency GaInAsSb mid-infrared detectors operating under back illumination , 2006 .

[12]  Eric Tournié,et al.  Interfacial intermixing in InAs/GaSb short-period-superlattices grown by molecular beam epitaxy , 2010 .

[13]  Jonathon T. Olesberg,et al.  High detectivity GaInAsSb pin infrared photodetector for blood glucose sensing , 2000 .

[14]  Shaoling Guo,et al.  Backside-illuminated infrared photoluminescence and photoreflectance: Probe of vertical nonuniformity of HgCdTe on GaAs , 2010 .

[15]  Yajun Wei,et al.  Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications , 2002 .

[16]  D. Ting,et al.  A high-performance long wavelength superlattice complementary barrier infrared detector , 2009 .

[17]  Room-Temperature p-n-p AlGaAsSb–InGaAsSb Heterojunction Phototransistors With Cutoff Wavelength at 2.5 $\mu$ m , 2006, IEEE Photonics Technology Letters.

[18]  Hongen Shen,et al.  Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence , 2010 .

[19]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[20]  Kai Cui,et al.  Long Wavelength Infrared InAs/GaSb Superlattice Photodetectors With InSb-Like and Mixed Interfaces , 2011, IEEE Journal of Quantum Electronics.

[21]  Martin Walther,et al.  Growth of InAs/GaSb short-period superlattices for high-resolution mid-wavelength infrared focal plane array detectors , 2005 .

[22]  Manijeh Razeghi,et al.  Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110 K , 2008 .

[23]  B. Satpati,et al.  Interface properties of (Ga,In)(N,As) and (Ga,In)(As,Sb) materials systems grown by molecular beam epitaxy , 2009 .