MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices

[1]  A. Shilatifard,et al.  Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis , 2019, American journal of respiratory and critical care medicine.

[2]  Samantha A. Morris,et al.  CellTag Indexing: genetic barcode-based sample multiplexing for single-cell genomics , 2019, Genome Biology.

[3]  Duhee Bang,et al.  Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations , 2019, Science Advances.

[4]  Allon M Klein,et al.  Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. , 2019, Cell systems.

[5]  Samantha Riesenfeld,et al.  EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data , 2019, Genome Biology.

[6]  Haojia Wu,et al.  Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis. , 2018, Journal of the American Society of Nephrology : JASN.

[7]  Bertrand Z. Yeung,et al.  Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics , 2018, Genome Biology.

[8]  Bo Li,et al.  Nuclei multiplexing with barcoded antibodies for single-nucleus genomics , 2018, Nature Communications.

[9]  Principal Investigators,et al.  Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris , 2018 .

[10]  M. Hild,et al.  DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery , 2018, Nature Communications.

[11]  Alex K. Shalek,et al.  Allergic inflammatory memory in human respiratory epithelial progenitor cells , 2018, Nature.

[12]  Zev J. Gartner,et al.  DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors , 2018, bioRxiv.

[13]  Allon M. Klein,et al.  Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo , 2018, Science.

[14]  Lior Pachter,et al.  Highly Multiplexed Single-Cell RNA-seq for Defining Cell Population and Transcriptional Spaces , 2018, bioRxiv.

[15]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[16]  Richard A. Muscat,et al.  Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding , 2018, Science.

[17]  Peter Schmid,et al.  PHLDA1 Mediates Drug Resistance in Receptor Tyrosine Kinase-Driven Cancer , 2018, Cell reports.

[18]  N. Carragher,et al.  Monocytes Differentiate to Immune Suppressive Precursors of Metastasis-Associated Macrophages in Mouse Models of Metastatic Breast Cancer , 2018, Front. Immunol..

[19]  James T. Webber,et al.  Single-cell transcriptomic characterization of 20 organs and tissues from individual mice creates a Tabula Muris , 2017 .

[20]  Chun Jimmie Ye,et al.  Multiplexed droplet single-cell RNA-sequencing using natural genetic variation , 2017, Nature Biotechnology.

[21]  Ronit Vogt Sionov,et al.  The regulation of pre-metastatic niche formation by neutrophils , 2017, Oncotarget.

[22]  Kevin Petrecca,et al.  A Targetable EGFR-Dependent Tumor-Initiating Program in Breast Cancer. , 2017, Cell reports.

[23]  Johannes Zuber,et al.  Coupling shRNA screens with single-cell RNA-seq identifies a dual role for mTOR in reprogramming-induced senescence , 2017, Genes & development.

[24]  Aviv Regev,et al.  Massively-parallel single nucleus RNA-seq with DroNc-seq , 2017, Nature Methods.

[25]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[26]  Angela N. Brooks,et al.  A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles , 2017, Cell.

[27]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[28]  M. Thangaraju,et al.  Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade , 2017, Nature Communications.

[29]  J. C. Love,et al.  Seq-Well: A Portable, Low-Cost Platform for High-Throughput Single-Cell RNA-Seq of Low-Input Samples , 2017 .

[30]  I. Amit,et al.  Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq , 2016, Cell.

[31]  Thomas M. Norman,et al.  A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response , 2016, Cell.

[32]  Thomas M. Norman,et al.  Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens , 2016, Cell.

[33]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[34]  Andrew H. Beck,et al.  EMDomics: a robust and powerful method for the identification of genes differentially expressed between heterogeneous classes , 2015, Bioinform..

[35]  Chih-Yang Wang,et al.  Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells , 2015, Nature.

[36]  Yufeng Shen,et al.  Additional file 8: Table S8. of RNA sequencing from human neutrophils reveals distinct transcriptional differences associated with chronic inflammatory states , 2015 .

[37]  Sharad K Sharma,et al.  Pulmonary Alveolar Macrophages Contribute to the Premetastatic Niche by Suppressing Antitumor T Cell Responses in the Lungs , 2015, The Journal of Immunology.

[38]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[39]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[40]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression data , 2015 .

[41]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[42]  Je-in Youn,et al.  Regulation of tumor metastasis by myeloid-derived suppressor cells. , 2015, Annual review of medicine.

[43]  Tejal A. Desai,et al.  Efficient Targeting of Fatty-Acid Modified Oligonucleotides to Live Cell Membranes through Stepwise Assembly , 2014, Biomacromolecules.

[44]  Cathrin Brisken,et al.  Progesterone signalling in breast cancer: a neglected hormone coming into the limelight , 2013, Nature Reviews Cancer.

[45]  K. Gravdal,et al.  Bone marrow-derived Gr1+ cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. , 2013, Cancer discovery.

[46]  Andrew McDavid,et al.  Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments , 2012, Bioinform..

[47]  T. Hashimshony,et al.  CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. , 2012, Cell reports.

[48]  R. Sandberg,et al.  Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells , 2012, Nature Biotechnology.

[49]  Mark T. W. Ebbert,et al.  Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes , 2011, Nature Medicine.

[50]  Heidi S Feiler,et al.  Molecular distinctions between stasis and telomere attrition senescence barriers shown by long-term culture of normal human mammary epithelial cells. , 2009, Cancer research.

[51]  Robert Gentleman,et al.  ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data , 2009, Bioinform..

[52]  S. Fox,et al.  Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers , 2009, Nature Medicine.

[53]  Chris Sander,et al.  An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors , 2009, Oncogene.

[54]  Tilman Brummer,et al.  Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1 , 2006, Nature Immunology.

[55]  F. Garrido,et al.  Coordinated downregulation of the antigen presentation machinery and HLA class I/β2‐microglobulin complex is responsible for HLA‐ABC loss in bladder cancer , 2005, International journal of cancer.

[56]  J. Lieberman,et al.  Nuclear war: the granzyme A-bomb. , 2003, Current opinion in immunology.

[57]  B. Prabhakar,et al.  Binding and functional effects of thyroid stimulating hormone on human immune cells , 1990, Journal of Clinical Immunology.

[58]  Andrew C. Adey,et al.  Single-Cell Transcriptional Profiling of a Multicellular Organism , 2017 .

[59]  Mark P. J. van der Loo,et al.  The stringdist Package for Approximate String Matching , 2014, R J..

[60]  Laurens van der Maaten,et al.  Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..

[61]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[62]  S. Ziegler,et al.  The activation antigen CD69 , 1994, Stem cells.