Symbolically efficient formulations for computational robot dynamics

In 1983, the authors implemented the computer program Algebraic Robot Modeler (ARM) to generate symbolically complete closed-form and recursive dynamic robot models.1–4 Then, in 1985, we incorporated in ARM heuristic rules for the systematic organization of dynamic robot models to reduce the computational requirements of customized forward and inverse dynamics calculations. We compare the symbolic efficiencies of six robot dynamics formulations for generating closed-form and recursive models. We find that our Lagrange-Christoffel formulation is the most symbolically efficient generator of closed-form dynamic robot models. In our companion paper,3 we resolve the issue of numerical efficiency of customized closed-form and recursive algorithms for computing the forward and inverse dynamics of kinematically and dynamically structured manipulators.

[1]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[2]  J. Y. S. Luh,et al.  On-Line Computational Scheme for Mechanical Manipulators , 1980 .

[3]  J. Y. S. Luh,et al.  Automatic generation of dynamic equations for mechanical manipulators , 1981 .

[4]  David E. Orin,et al.  Control of Force Distribution in Robotic Mechanisms Containing Closed Kinematic Chains , 1981 .

[5]  David E. Orin,et al.  Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .

[6]  C. S. George Lee,et al.  Robot Arm Kinematics, Dynamics, and Control , 1982, Computer.

[7]  Richard P. Paul,et al.  The Dynamics of the PUMA Manipulator , 1983, 1983 American Control Conference.

[8]  Thomas R. Kane,et al.  The Use of Kane's Dynamical Equations in Robotics , 1983 .

[9]  A. Bejczy,et al.  Robot arm dynamic model reduction for control , 1983, The 22nd IEEE Conference on Decision and Control.

[10]  J. Y. S. Luh,et al.  Conventional controller design for industrial robots — A tutorial , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  John M. Hollerbach,et al.  Wrist-partitioned inverse kinematic accelerations and manipulator dynamics , 1984, ICRA.

[12]  J. Murray,et al.  ARM: An algebraic robot dynamic modeling program , 1984, ICRA.

[13]  Neil M. Swartz Arm Dynamics Simulation , 2007, J. Field Robotics.

[14]  G. Cesareo,et al.  DYMIR: A code for generating dynamic model of robots , 1984, ICRA.

[15]  Charles P. Neuman,et al.  Properties and structure of dynamic robot models for control engineering applications , 1985 .

[16]  Charles P. Neuman,et al.  Discrete dynamic robot models , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  Pradeep K. Khosla,et al.  Computational requirements of customized Newton-Euler algorithms , 1985, J. Field Robotics.

[18]  John J. Murray,et al.  Computational robot dynamics: Foundations and applications , 1985, J. Field Robotics.

[19]  Charles P. Neuman,et al.  The inertial characteristics of dynamic robot models , 1985 .

[20]  Richard H. Lathrop,et al.  Parallelism in Manipulator Dynamics , 1985 .

[21]  John J. Murray,et al.  Computational robot dynamics , 1986 .

[22]  Charles Neuman,et al.  The Complete Dynamic Model and Customized Algorithms of the Puma Robot , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  John J. Murray,et al.  Customized computational robot dynamics , 1987, J. Field Robotics.

[24]  Charles P. Neuman,et al.  Robust discrete nonlinear feedback control for robotic manipulators , 1987, J. Field Robotics.

[25]  Charles P. Neuman,et al.  Kinematic modeling of wheeled mobile robots , 1987, J. Field Robotics.