Antennas and Wave Propagation in Novel Wireless Sensing Applications Based on Passive UHF RFID

ZusammenfassungPassives RFID im UHF (Ultra High Frequency)-Frequenzbereich ist eine vielversprechende Technologie für moderne drahtlose Sensornetzwerke. RFID ist die englische Kurzform für "Radio Frequency Identification", man spricht von der Identifizierung mit Hilfe elektromagnetischer Wellen. Der Vorteil eines solchen passiven Systems in Sensornetzwerken liegt darin, dass batteriebetriebene und damit voluminöse Sensorknoten vermieden werden können. Die Leistung, die zum Betrieb der einzelnen Sensorknoten notwendig ist, wird vom abgestrahlten elektromagnetischen Feld der Kontrolleinheit im Netzwerk bezogen. In diesem Beitrag werden drahtlose Sensornetzwerke in den Anwendungsbereichen der Autoreifenüberwachung und der medizinischen Fernüberwachung von Menschen vorgestellt. Beide Systeme beruhen auf passivem UHF RFID. Im Besonderen werden Aspekte bezüglich einer leistungseffizienten drahtlosen passiven Kommunikation untersucht, im Speziellen stehen das Antennendesign der Sensorknoten und die Wellenausbreitung im Sensornetzwerk im Mittelpunkt.SummaryA promising communication technology for novel wireless sensing applications is passive ultra high frequency (UHF) radio frequency identification (RFID). The advantage of passive RFID in wireless sensor networks is that bulky, battery-powered sensor nodes can be avoided, because all power required for operation of the sensor nodes is drawn from the electromagnetic field radiated by a control unit. In this contribution, wireless sensing applications in the field of car tire monitoring and remote health monitoring, based on passive UHF RFID, are presented. In particular, important aspects regarding a power efficient, wireless, passive communication system are exemplified, including the antenna design of the sensor nodes as well as the investigation of the wave propagation in these networks.

[1]  P. S. Hall,et al.  Antennas and propagation for body centric communications , 2006, 2006 First European Conference on Antennas and Propagation.

[2]  Yang Hao,et al.  Wireless body sensor networks for health-monitoring applications , 2008, Physiological measurement.

[3]  W. Scanlon,et al.  Antennas for Over-Body-Surface Communication at 2.45 GHz , 2009, IEEE Transactions on Antennas and Propagation.

[4]  Robert Langwieser,et al.  Dual-band channel gain statistics for dual-antenna tyre pressure monitoring RFID tags , 2011, 2011 IEEE International Conference on RFID.

[5]  Catherine Dehollain,et al.  Design and Optimization of Passive UHF RFID Systems , 2006 .

[6]  G.D. Durgin,et al.  Complete Link Budgets for Backscatter-Radio and RFID Systems , 2009, IEEE Antennas and Propagation Magazine.

[7]  C. Parini,et al.  Antennas and propagation for on-body communication systems , 2007, IEEE Antennas and Propagation Magazine.

[8]  P.V. Nikitin,et al.  Performance limitations of passive UHF RFID systems , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[9]  Yahya Rahmat-Samii,et al.  On-body RFID tag design for human monitoring applications , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[10]  Arpad L. Scholtz,et al.  Input Impedance Measurement of a Dipole Antenna Mounted on a Car Tire , 2009 .

[11]  Arpad L. Scholtz,et al.  Determining the Dielectric Properties of a Car Tire for an Advanced Tire Monitoring System , 2009, 2009 IEEE 70th Vehicular Technology Conference Fall.

[12]  P. Nikitin,et al.  Antenna design for UHF RFID tags: a review and a practical application , 2005, IEEE Transactions on Antennas and Propagation.

[13]  G.-A. Chakam,et al.  RF Modelling and Characterization of a Tyre Pressure Monitoring System , 2007 .

[14]  J. Grosinger,et al.  Bandwidth issues of UHF RFID transponder antennas for advanced tire monitoring , 2011, 2011 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications.

[15]  P.S. Hall,et al.  Antennas and propagation for body centric wireless communications , 2012, IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005..

[16]  Gaetano Marrocco,et al.  Modeling, Design and Experimentation of Wearable RFID Sensor Tag , 2010, IEEE Transactions on Antennas and Propagation.

[17]  P.V. Nikitin,et al.  Antennas and Propagation in UHF RFID Systems , 2008, 2008 IEEE International Conference on RFID.

[18]  J. Ollikainen,et al.  Propagation Between On-Body Antennas , 2009, IEEE Transactions on Antennas and Propagation.

[19]  M. Fischer,et al.  Indoor on-body channel measurements at 900MHz , 2011, 2011 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications.

[20]  Gregor Lasser,et al.  Dual-Band Channel Measurements for an Advanced Tyre Monitoring System , 2010, 2010 IEEE 71st Vehicular Technology Conference.

[21]  Akira Todoroki,et al.  Wireless Monitoring of Automobile Tires for Intelligent Tires , 2008, Sensors.

[22]  R. W. Lau,et al.  The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. , 1996, Physics in medicine and biology.

[23]  Gaetano Marrocco,et al.  Pervasive electromagnetics: sensing paradigms by passive RFID technology , 2010, IEEE Wireless Communications.

[24]  Alanson P. Sample,et al.  Design of an RFID-Based Battery-Free Programmable Sensing Platform , 2008, IEEE Transactions on Instrumentation and Measurement.

[25]  Gregor Lasser,et al.  Gain and efficiency measurement of antennas for an advanced Tire monitoring system , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.