Eigenfunctions of Fourier and Fractional Fourier Transforms With Complex Offsets and Parameters

In this paper, we derive the eigenfunctions of the Fourier transform (FT), the fractional FT (FRFT), and the linear canonical transform (LCT) with (1) complex parameters and (2) complex offsets. The eigenfunctions in the cases where the parameters and offsets are real were derived in literature. We extend the previous works to the cases of complex parameters and complex offsets. We first derive the eigenvectors of the offset discrete FT. They approximate the samples of the eigenfunctions of the continuous offset FT. We find that the eigenfunctions of the offset FT with complex offsets are the smoothed Hermite-Gaussian functions with shifting and modulation. Then we extend the results for the case of the offset FRFT and the offset LCT. We can use the derived eigenfunctions to simulate the self-imaging phenomenon for the optical system with energy-absorbing component, mode selection, encryption, and define the fractional Z-transform and the fractional Laplace transform.

[1]  Girish S. Agarwal,et al.  The generalized Fresnel transform and its application to optics , 1996 .

[2]  Kurt Bernardo Wolf,et al.  Construction and Properties of Canonical Transforms , 1979 .

[3]  Chien-Cheng Tseng,et al.  Eigenvalues and eigenvectors of generalized DFT, generalized DHT, DCT-IV and DST-IV matrices , 2002, IEEE Trans. Signal Process..

[4]  Soo-Chang Pei,et al.  Eigenfunctions of linear canonical transform , 2002, IEEE Trans. Signal Process..

[5]  Moshe Nazarathy,et al.  Generalized mode propagation in first-order optical systems with loss or gain , 1982 .

[6]  T. Alieva,et al.  Fractionalization of the linear cyclic transforms. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  J. Goodman Introduction to Fourier optics , 1969 .

[8]  Tatiana Alieva,et al.  LETTER TO THE EDITOR: Self-fractional Fourier functions and selection of modes , 1997 .

[9]  A. Lohmann,et al.  Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform. , 1994, Applied optics.

[10]  B. Dickinson,et al.  Eigenvectors and functions of the discrete Fourier transform , 1982 .

[11]  John T. Sheridan,et al.  Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation. , 1994, Optics letters.

[12]  M. Bastiaans,et al.  Self-affinity in phase space. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  A. Papoulis,et al.  The Fourier Integral and Its Applications , 1963 .

[14]  STUART CLARY,et al.  Shifted Fourier Matrices and Their Tridiagonal Commutors , 2002, SIAM J. Matrix Anal. Appl..

[15]  J. Sheridan,et al.  Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation an operator approach , 1994 .

[16]  Soo-Chang Pei,et al.  Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  Soo-Chang Pei,et al.  Generalized eigenvectors and fractionalization of offset DFTs and DCTs , 2004, IEEE Transactions on Signal Processing.

[18]  Haldun M. Özaktas,et al.  The fractional fourier transform , 2001, 2001 European Control Conference (ECC).

[19]  Okan K. Ersoy Semisystolic Array Implementation of Circular, Skew Circular, and Linear Convolutions , 1985, IEEE Transactions on Computers.

[20]  Luís B. Almeida,et al.  The fractional Fourier transform and time-frequency representations , 1994, IEEE Trans. Signal Process..

[21]  J. McClellan,et al.  Eigenvalue and eigenvector decomposition of the discrete Fourier transform , 1972 .

[22]  Kurt Bernardo Wolf,et al.  On self-reciprocal functions under a class of integral transforms , 1977 .

[23]  Magdy T. Hanna,et al.  Hermite-Gaussian-like eigenvectors of the discrete Fourier transform matrix based on the direct utilization of the orthogonal projection matrices on its eigenspaces , 2006, IEEE Transactions on Signal Processing.

[24]  G. Bongiovanni,et al.  One-dimensional and two-dimensional generalised discrete fourier transforms , 1976 .

[25]  Chien-Cheng Tseng,et al.  Discrete fractional Fourier transform based on orthogonal projections , 1999, IEEE Trans. Signal Process..

[26]  Joseph Shamir,et al.  First-order optics: operator representation for systems with loss or gain , 1982 .

[27]  Tatiana Alieva,et al.  First-order optical systems with unimodular eigenvalues. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  F. Grünbaum,et al.  The eigenvectors of the discrete Fourier transform: A version of the Hermite functions , 1982 .

[29]  Cagatay Candan,et al.  The discrete fractional Fourier transform , 2000, IEEE Trans. Signal Process..

[30]  V. Namias The Fractional Order Fourier Transform and its Application to Quantum Mechanics , 1980 .

[31]  K. Wolf,et al.  Continuous vs. discrete fractional Fourier transforms , 1999 .