Probing the fate of soil-derived core and intact polar GDGTs in aquatic environments

Introduction Conclusions References

[1]  E. Hopmans,et al.  In situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia , 2014 .

[2]  C. Schubert,et al.  Sources of glycerol dialkyl glycerol tetraethers (GDGTs) in catchment soils, water column and sediments of Lake Rotsee (Switzerland) – implications for the application of GDGT-based proxies for lakes , 2014 .

[3]  J. Russell,et al.  Effects of temperature, pH and nutrient concentration on branched GDGT distributions in East African lakes: Implications for paleoenvironmental reconstruction , 2014 .

[4]  A. Rosell‐Melé,et al.  An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures , 2013 .

[5]  J. Damsté,et al.  Linking isoprenoidal GDGT membrane lipid distributions with gene abundances of ammonia-oxidizing Thaumarchaeota and uncultured crenarchaeotal groups in the water column of a tropical lake (Lake Challa, East Africa). , 2013, Environmental microbiology.

[6]  J. S. Sinninghe Damsté,et al.  Impact of seasonal hydrological variation on the distributions of tetraether lipids along the Amazon River in the central Amazon basin: implications for the MBT/CBT paleothermometer and the BIT index , 2013, Front. Microbiol..

[7]  S. Derenne,et al.  Effects of a short-term experimental microclimate warming on the abundance and distribution of branched GDGTs in a French peatland , 2013 .

[8]  Chuanlun Zhang,et al.  Microbial glycerol dialkyl glycerol tetraethers from river water and soil near the Three Gorges Dam on the Yangtze River , 2013 .

[9]  M. Bonnet,et al.  Disentangling the origins of branched tetraether lipids and crenarchaeol in the lower Amazon River: Implications for GDGT‐based proxies , 2013 .

[10]  Stefan Schouten,et al.  The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review , 2013 .

[11]  R. B. Jackson,et al.  Revised calibration of the MBT-CBT paleotemperature proxy , 2012 .

[12]  J. Damsté,et al.  Tracing soil organic carbon in the lower Amazon River and its tributaries using GDGT distributions and bulk organic matter properties , 2012 .

[13]  M. Stieglmeier,et al.  Intact Polar and Core Glycerol Dibiphytanyl Glycerol Tetraether Lipids of Group I.1a and I.1b Thaumarchaeota in Soil , 2012, Applied and Environmental Microbiology.

[14]  T. Bianchi,et al.  A re-evaluation of the use of branched GDGTs as terrestrial biomarkers: Implications for the BIT Index , 2012 .

[15]  Stefan Schouten,et al.  Core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in Sand Pond, Warwick, Rhode Island (USA): Insights into the origin of lacustrine GDGTs , 2012 .

[16]  Jinxiang Wang,et al.  Production of Branched Tetraether Lipids in the Lower Pearl River and Estuary: Effects of Extraction Methods and Impact on bGDGT Proxies , 2012, Front. Microbio..

[17]  L. Tranvik,et al.  Selective decay of terrestrial organic carbon during transport from land to sea , 2012 .

[18]  Stefan Schouten,et al.  Identification and distribution of intact polar branched tetraether lipids in peat and soil , 2011 .

[19]  B. Engelen,et al.  Supplementary material to : “ A laboratory experiment of intact polar lipid degradation in sandy sediments ” , 2011 .

[20]  Stefan Schouten,et al.  Absence of seasonal patterns in MBT-CBT indices in mid-latitude soils , 2011 .

[21]  R. Pancost,et al.  Sources and distributions of tetraether lipids in surface sediments across a large river-dominated continental margin , 2011 .

[22]  E. Hopmans,et al.  13,16-Dimethyl Octacosanedioic Acid (iso-Diabolic Acid), a Common Membrane-Spanning Lipid of Acidobacteria Subdivisions 1 and 3 , 2011, Applied and Environmental Microbiology.

[23]  Annika C. Mosier,et al.  Core and Intact Polar Glycerol Dibiphytanyl Glycerol Tetraether Lipids of Ammonia-Oxidizing Archaea Enriched from Marine and Estuarine Sediments , 2011, Applied and Environmental Microbiology.

[24]  Stefan Schouten,et al.  Influence of soil pH on the abundance and distribution of core and intact polar lipid-derived branched GDGTs in soil , 2010 .

[25]  E. Hopmans,et al.  Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s) , 2010 .

[26]  J. Prosser,et al.  Autotrophic ammonia oxidation by soil thaumarchaea , 2010, Proceedings of the National Academy of Sciences.

[27]  Stefan Schouten,et al.  New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions , 2010 .

[28]  Stefan Schouten,et al.  Fossilization and degradation of intact polar lipids in deep subsurface sediments: A theoretical approach , 2010 .

[29]  M. Blumenberg,et al.  Soil microbial community changes as a result of long-term exposure to a natural CO2 vent , 2010 .

[30]  N. Trustrum,et al.  Terrestrial sources and export of particulate organic carbon in the Waipaoa sedimentary system: Problems, progress and processes , 2010 .

[31]  M. Wagner,et al.  Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I.1b Archaeon , 2010, The ISME Journal.

[32]  J. Russell,et al.  Distributions of branched GDGTs in a tropical lake system: Implications for lacustrine application of the MBT/CBT paleoproxy. , 2009 .

[33]  A. Stams,et al.  Constraints on the Biological Source(s) of the Orphan Branched Tetraether Membrane Lipids , 2009 .

[34]  Stefan Schouten,et al.  Fluxes and distribution of tetraether lipids in an equatorial African lake: Constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings , 2009 .

[35]  D. Kristensen,et al.  Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway). , 2009 .

[36]  J. S. Sinninghe Damsté,et al.  Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect , 2009 .

[37]  Stefan Schouten,et al.  Separation of core and intact polar archaeal tetraether lipids using silica columns: insights into living and fossil biomass contributions. , 2009 .

[38]  M. Könneke,et al.  Cultivation of a Thermophilic Ammonia Oxidizing Archaeon Synthesizing Crenarchaeol , 2022 .

[39]  Stefan Schouten,et al.  Coupled Thermal and Hydrological Evolution of Tropical Africa over the Last Deglaciation , 2007, Science.

[40]  Stefan Schouten,et al.  Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. , 2007, Analytical chemistry.

[41]  Stefan Schouten,et al.  Environmental controls on bacterial tetraether membrane lipid distribution in soils , 2007 .

[42]  J. Downing,et al.  Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget , 2007, Ecosystems.

[43]  O. Spaargaren,et al.  Occurrence and distribution of tetraether membrane lipids in soils : Implications for the use of the TEX86 proxy and the BIT index , 2006 .

[44]  F. Bourrin,et al.  Origin and distribution of terrestrial organic matter in the NW Mediterranean (Gulf of Lions): Exploring the newly developed BIT index , 2006 .

[45]  D. Thompson,et al.  An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids , 2006 .

[46]  T. Urich,et al.  Archaea predominate among ammonia-oxidizing prokaryotes in soils , 2006, Nature.

[47]  Marc Strous,et al.  Archaeal nitrification in the ocean , 2006, Proceedings of the National Academy of Sciences.

[48]  Stefan Schouten,et al.  Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. , 2006, Environmental microbiology.

[49]  Stefan Schouten,et al.  A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids , 2004 .

[50]  R. Summons,et al.  Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry--new biomarkers for biogeochemistry and microbial ecology. , 2004, Rapid communications in mass spectrometry : RCM.

[51]  D. White,et al.  Determination of the sedimentary microbial biomass by extractible lipid phosphate , 2004, Oecologia.

[52]  R. Pancost,et al.  Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings , 2003 .

[53]  Stefan Schouten,et al.  Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? , 2002 .

[54]  Stefan Schouten,et al.  Distribution of Membrane Lipids of Planktonic Crenarchaeota in the Arabian Sea , 2002, Applied and Environmental Microbiology.

[55]  Stefan Schouten,et al.  Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Stefan Schouten,et al.  Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments , 2000 .

[57]  M. Goni,et al.  A REASSESSMENT OF THE SOURCES AND IMPORTANCE OF LAND-DERIVED ORGANIC MATTER IN SURFACE SEDIMENTS FROM THE GULF OF MEXICO , 1998 .

[58]  J. Patton,et al.  The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments , 1986 .