Relaxation Runge–Kutta Methods for Hamiltonian Problems

The recently-introduced relaxation approach for Runge–Kutta methods can be used to enforce conservation of energy in the integration of Hamiltonian systems. We study the behavior of implicit and explicit relaxation Runge–Kutta methods in this context. We find that, in addition to their useful conservation property, the relaxation methods yield other improvements. Experiments show that their solutions bear stronger qualitative similarity to the true solution and that the error grows more slowly in time. We also prove that these methods are superconvergent for a certain class of Hamiltonian systems.

[1]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[2]  Hendrik Ranocha Mimetic properties of difference operators: product and chain rules as for functions of bounded variation and entropy stability of second derivatives , 2018, BIT Numerical Mathematics.

[3]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[4]  Gregor Gassner,et al.  Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations , 2016, J. Comput. Phys..

[5]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[6]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[7]  Jesús María Sanz-Serna,et al.  An explicit finite-difference scheme with exact conservation properties , 1982 .

[8]  Ernst Hairer,et al.  ON ENERGY CONSERVATION OF THE SIMPLIFIED TAKAHASHI-IMADA METHOD , 2009 .

[9]  J. M. Sanz-Serna,et al.  A Method for the Integration in Time of Certain Partial Differential Equations , 1983 .

[10]  O. Gonzalez Time integration and discrete Hamiltonian systems , 1996 .

[11]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[12]  J. Sanz-Serna,et al.  Accuracy and conservation properties in numerical integration: the case of the Korteweg-de Vries equation , 1997 .

[13]  B. Cano,et al.  Error Growth in the Numerical Integration of Periodic Orbits, with Application to Hamiltonian and Reversible Systems , 1997 .

[14]  Hendrik Ranocha,et al.  General Relaxation Methods for Initial-Value Problems with Application to Multistep Schemes , 2020, Numerische Mathematik.

[15]  Manuel Calvo,et al.  Error growth in the numerical integration of periodic orbits , 2011, Math. Comput. Simul..

[16]  Hendrik Ranocha,et al.  Generalised summation-by-parts operators and variable coefficients , 2017, J. Comput. Phys..

[17]  H. Lewis,et al.  A comparison of symplectic and Hamilton's principle algorithms for autonomous and non-autonomous systems of ordinary differential equations , 2001 .

[18]  G. J. Cooper Stability of Runge-Kutta Methods for Trajectory Problems , 1987 .

[19]  Ernst Hairer,et al.  Energy behaviour of the Boris method for charged-particle dynamics , 2018, BIT Numerical Mathematics.

[20]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[21]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[22]  J. Verwer,et al.  Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .

[23]  Manuel Calvo,et al.  On the Preservation of Invariants by Explicit Runge-Kutta Methods , 2006, SIAM J. Sci. Comput..

[24]  J. M. Sanz-Serna,et al.  Lack of dissipativity is not symplecticness , 1995 .

[25]  David I. Ketcheson,et al.  Relaxation Runge-Kutta Methods: Conservation and Stability for Inner-Product Norms , 2019, SIAM J. Numer. Anal..

[26]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[27]  M. P. Laburta,et al.  Projection methods preserving Lyapunov functions , 2010 .

[28]  Mari Paz Calvo,et al.  The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem , 1993, SIAM J. Sci. Comput..

[29]  J. Dormand,et al.  High order embedded Runge-Kutta formulae , 1981 .

[30]  Lawrence F. Shampine,et al.  An efficient Runge-Kutta (4,5) pair , 1996 .

[31]  Lisandro Dalcin,et al.  Relaxation Runge-Kutta Methods: Fully Discrete Explicit Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations , 2019, SIAM J. Sci. Comput..

[32]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[33]  E. Fehlberg,et al.  Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems , 1969 .

[34]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[35]  Antonella Zanna,et al.  Preserving algebraic invariants with Runge-Kutta methods , 2000 .

[36]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  E. Hairer Energy-preserving variant of collocation methods 1 , 2010 .

[38]  Hendrik Ranocha,et al.  Energy Stability of Explicit Runge-Kutta Methods for Non-autonomous or Nonlinear Problems , 2020, SIAM J. Numer. Anal..

[39]  Hendrik Ranocha,et al.  On strong stability of explicit Runge–Kutta methods for nonlinear semibounded operators , 2018, IMA Journal of Numerical Analysis.