Symmetric blind information reconciliation for quantum key distribution

Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind reconciliation technique, based on low-density parity-check (LDPC) codes, offers remarkable prospectives for efficient information reconciliation without an a priori error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. The proposed technique is based on introducing symmetry in operations of parties, and the consideration of results of unsuccessful belief-propagation decodings.

[1]  Pascal Junod,et al.  A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing , 2013, 1309.2583.

[2]  H. Lo Method for decoupling error correction from privacy amplification , 2002, quant-ph/0201030.

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Christoph Pacher,et al.  Estimating Channel Parameters from the Syndrome of a Linear Code , 2013, IEEE Communications Letters.

[5]  H. Weinfurter,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[6]  Gilles Brassard,et al.  Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.

[7]  David Elkouss,et al.  Efficient reconciliation protocol for discrete-variable quantum key distribution , 2009, 2009 IEEE International Symposium on Information Theory.

[8]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[9]  J.-M. Goethals,et al.  IEEE international symposium on information theory , 1981 .

[10]  David Elkouss,et al.  Information reconciliation for quantum key distribution , 2010, 1007.1616.

[11]  Ajay Dholakia,et al.  Efficient implementations of the sum-product algorithm for decoding LDPC codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[12]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[13]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[14]  David Elkouss,et al.  Improved Construction of Irregular Progressive Edge-Growth Tanner Graphs , 2010, IEEE Communications Letters.

[15]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[16]  David Elkouss,et al.  Key Reconciliation for High Performance Quantum Key Distribution , 2013, Scientific Reports.

[17]  Larry Carter,et al.  New Hash Functions and Their Use in Authentication and Set Equality , 1981, J. Comput. Syst. Sci..

[18]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[19]  Daniel J. Costello,et al.  ARQ schemes for data transmission in mobile radio systems , 1984, IEEE Transactions on Vehicular Technology.

[20]  David Elkouss,et al.  Analysis of a rate-adaptive reconciliation protocol and the effect of the leakage on the secret key rate , 2013, ArXiv.

[21]  Xiongfeng Ma,et al.  Practical issues in quantum-key-distribution postprocessing , 2009, 0910.0312.

[22]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[23]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[24]  Chip Elliott,et al.  Current status of the DARPA quantum network (Invited Paper) , 2005, SPIE Defense + Commercial Sensing.

[25]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[26]  Alan Mink,et al.  LDPC for QKD Reconciliation , 2012, ArXiv.

[27]  Thomas Brochmann Pedersen,et al.  High performance information reconciliation for QKD with CASCADE , 2013, Quantum Inf. Comput..

[28]  Svilen Dimitrov,et al.  Proceedings of the Global Telecommunications Conference , 2008 .

[29]  M. Handzic 5 , 1824, The Banality of Heidegger.

[30]  Christoph Pacher,et al.  Demystifying the information reconciliation protocol cascade , 2014, Quantum Inf. Comput..

[31]  Wei Zhang,et al.  Quantum Secure Direct Communication with Quantum Memory. , 2016, Physical review letters.

[32]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[33]  Gui-Lu Long,et al.  Experimental quantum secure direct communication with single photons , 2015, Light: Science & Applications.

[34]  E. O. Kiktenko,et al.  Post-processing procedure for industrial quantum key distribution systems , 2016, ArXiv.