Composite materials for wind power turbine blades

Ke yW ords composites, properties, processing, damage, fatigue ■ Abstract Renewable energy resources, of which wind energy is prominent, are part of the solution to the global energy problem. Wind turbine and the rotorblade concepts are reviewed, and loadings by wind and gravity as important factors for the fatigue performance of the materials are considered. Wood and composites are discussed as candidates for rotorblades. The fibers and matrices for composites are described, and their high stiffness, low density, and good fatigue performance are em- phasized. Manufacturing technologies for composites are presented and evaluated with respect to advantages, problems, and industrial potential. The important technologies of today are prepreg (pre-impregnated) technology and resin infusion technology. The mechanical properties of fiber composite materials are discussed, with a focus on fa- tigue performance. Damage and materials degradation during fatigue are described. Testing procedures for documentation of properties are reviewed, and fatigue loading histories are discussed, together with methods for data handling and statistical analysis of (large) amounts of test data. Future challenges for materials in the field of wind turbines are presented, with a focus on thermoplastic composites, new structural ma- terials concepts, new structural design aspects, structural health monitoring, and the coming trends and markets for wind energy.

[1]  John Goodman,et al.  Mechanics applied to engineering , 1904 .

[2]  A. Palmgren Die Lebensdauer von Kugellargern , 1924 .

[3]  E. W. C. Wilkins,et al.  Cumulative damage in fatigue , 1956 .

[4]  W. D. Dover,et al.  VARIABLE AMPLITUDE FATIGUE OF WELDED STRUCTURES , 1979 .

[5]  A. Lystrup,et al.  WINGBLADES OF GLASS FIBRE REINFORCED POLYESTER FOR A 630 kW WINDTURBINE DESIGN, FABRICATION AND MATERIALS TESTING , 1980 .

[6]  Re Little,et al.  Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life ( , 1981 .

[7]  R. Talreja,et al.  Fatigue and Creep of Composite Materials. Proceedings of the 3. Risø International Symposium on Metallurgy and Materials Science , 1982 .

[8]  R. Talreja Damage models for fatigue of composite materials , 1982 .

[9]  R. Lamothe,et al.  Evaluation of Fixturing for Compression Testing of Metal Matrix and Polymer/Epoxy Composites , 1983 .

[10]  A. R. Bunsell,et al.  Fibre reinforcements for composite materials , 1988 .

[11]  J Solin Methods for comparing fatigue lives for spectrum loading , 1990 .

[12]  Charles E. Bakis,et al.  Fatigue Behavior of Composite Laminates , 1991 .

[13]  A. A. Ten Have WISPER and WISPERX Final definition of two standardised fatigue loading sequences for wind turbine blades , 1992 .

[14]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[15]  A. Lystrup,et al.  Fatigue properties and design of wingblades for windturbines. Contract no. JOUR-0071-DK (MB): Fatigue diagrams for glass/polyester composite materials. Final report for the period April 1, 1990 to March 31, 1993 , 1994 .

[16]  K. L. Edwards Design data for reinforced plastics: A guide for engineers and designers , 1994 .

[17]  R. M. Mayer Design of Composite Structures Against Fatigue Applications to Wind Turbine Blades , 1996 .

[18]  A. Lystrup,et al.  Fatigue of Materials and Components for Wind Turbine Rotor Blades , 1996 .

[19]  H. Lilholt,et al.  Fatigue performance of glass/polyester laminates and the monitoring of material degradation , 1996 .

[20]  Knut O. Ronold,et al.  Estimation of fatigue curves for design of composite laminates , 1996 .

[21]  Bent F. Sørensen,et al.  Polymeric composites - expanding the limits , 1997 .

[22]  Hans Lilholt,et al.  Fatigue damage prediction by measurements of the stiffness degradation in polymer matrix composites , 1997 .

[23]  D. Adams,et al.  The Wyoming Combined Loading Compression (CLC) Test Method , 1997 .

[24]  Hans Lilholt,et al.  Fatigue damage accumulation and lifetime prediction of GFRP materials under block loading and stochastic loading , 1997 .

[25]  Ch.W. Kensche Method to Predict Fatigue Lifetimes of GFRP Wind Turbine Blades and Comparison with Experiments. , 1997 .

[26]  John F. Mandell,et al.  DOE/MSU composite material fatigue database: Test methods, materials, and analysis , 1997 .

[27]  P. Brøndsted,et al.  Vingedesign EFP-95. Slutrapport for materialer , 1998 .

[28]  P. Brøndsted,et al.  Measurement of damage progress in fibre reinforced polymer materials , 1999 .

[29]  Anthony Kelly,et al.  Comprehensive composite materials , 1999 .

[30]  Herbert J. Sutherland,et al.  On the Fatigue Analysis of Wind Turbines , 1999 .

[31]  Donald F. Adams,et al.  5.06 – Test methods for Mechanical Properties , 2000 .

[32]  Herbert J. Sutherland,et al.  A summary of the fatigue properties of wind turbine materials , 2000 .

[33]  C. Zweben,et al.  Fiber reinforcements and general theory of composites , 2000 .

[34]  Ramesh Talreja,et al.  2.14 – Fatigue of Polymer Matrix Composites , 2000 .

[35]  Hans Lilholt,et al.  1.10 – Natural Organic Fibers , 2000 .

[36]  Sridhar Venigalla,et al.  Polymer Matrix Composites , 2001 .

[37]  J. Schaarup Guidelines for design of wind turbines , 2001 .

[38]  H. Lilholt Sustainable natural and polymeric composites -science and technology : proceedings of the 23rd Risø International Symposium on Materials Science, 2-5 September 2002 , 2002 .

[39]  B. BIJUIANSKY,et al.  COMPRESSIVE FAILURE OF FIBRE COMPOSITES , 2002 .

[40]  D. Adams Tabbed Versus Untabbed Fiber-Reinforced Composite Compression Specimens , 2002 .

[41]  Jakob Wedel-Heinen,et al.  Type approval scheme for wind turbines. Recommendation for design documentation and test of wind turbine blades. , 2002 .

[42]  John F. Mandell,et al.  New Fatigue Data for Wind Turbine Blade Materials , 2003 .

[43]  Van Hemelrijck,et al.  OPTIMISATION OF A CRUCIFORM TEST SPECIMEN FOR BIAXIAL LOADING OF FIBRE REINFORCED MATERIAL SYSTEMS , 2004 .

[44]  Tanveer Ahmad,et al.  LIFE PREDICTIONS OF LONG FIBER COMPOSITES IN EXTREME ENVIRONMENTAL CONDITIONS USING DAMAGE EVOLUTION APPROACH , 2004 .

[45]  R. Apinis Accceleration of Fatigue Tests of Polymer Composite Materials by Using High-Frequency Loadings , 2004 .

[46]  George Z. Voyiadjis,et al.  Mechanics of Composite Materials with MATLAB , 2005 .

[47]  T. Philippidis,et al.  Subject number: T4 Introduction to the OPTIMAT BLADES project , 2006 .

[48]  Van Hemelrijck The digital image correlation technique as full field strain technique on biaxial loaded composites using cruciform specimens , 2006 .

[49]  Christoph W. Kensche,et al.  Fatigue of composites for wind turbines , 2006 .