Nonadhesive Alginate Hydrogels Support Growth of Pluripotent Stem Cell-Derived Intestinal Organoids

[1]  Andrés J. García,et al.  PEG-4MAL hydrogels for human organoid generation, culture, and in vivo delivery , 2018, Nature Protocols.

[2]  P. Higgins,et al.  A Method for Cryogenic Preservation of Human Biopsy Specimens and Subsequent Organoid Culture , 2018, Cellular and molecular gastroenterology and hepatology.

[3]  A. Brivanlou,et al.  Self-organization of a human organizer by combined WNT and NODAL signalling , 2018, Nature.

[4]  Sha Huang,et al.  Synthetic Hydrogels for Human Intestinal Organoid Generation and Colonic Wound Repair , 2017, Nature Cell Biology.

[5]  Ovijit Chaudhuri,et al.  Viscoelastic hydrogels for 3D cell culture. , 2017, Biomaterials science.

[6]  Noah F. Shroyer,et al.  Differentiation of Human Pluripotent Stem Cells into Colonic Organoids via Transient Activation of BMP Signaling. , 2017, Cell stem cell.

[7]  Alyssa J Miller,et al.  In Vitro Induction and In Vivo Engraftment of Lung Bud Tip Progenitor Cells Derived from Human Pluripotent Stem Cells , 2017, bioRxiv.

[8]  T. Schmidt,et al.  Animal Symposia and Workshops A-1 Bacterial Colonization Stimulates a Complex Physiological Response in the Immature Human Intestinal Epithelium , 2018 .

[9]  Alyssa J Miller,et al.  Identification, isolation and characterization of human LGR5-positive colon adenoma cells , 2017, Development.

[10]  Jacob W. Guggenheim,et al.  A process engineering approach to increase organoid yield , 2017, Development.

[11]  A. Martinez-Arias,et al.  The hope and the hype of organoid research , 2017, Development.

[12]  M. Little Organoids: a Special Issue , 2017, Development.

[13]  O. Klein,et al.  In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development , 2017, Development.

[14]  J. Spence,et al.  Hacking the Matrix. , 2017, Cell stem cell.

[15]  J. Spence,et al.  hPSC-derived lung and intestinal organoids as models of human fetal tissue. , 2016, Developmental biology.

[16]  Hans Clevers,et al.  Designer matrices for intestinal stem cell and organoid culture , 2016, Nature.

[17]  Alyssa J. Miller,et al.  A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids , 2016, eLife.

[18]  Namit Kumar,et al.  LGR4 and LGR5 Function Redundantly During Human Endoderm Differentiation , 2016, Cellular and molecular gastroenterology and hepatology.

[19]  Jason R Spence,et al.  Organoid Models of Human Gastrointestinal Development and Disease. , 2016, Gastroenterology.

[20]  Christopher T. Johnson,et al.  Synthetic matrices reveal contributions of ECM biophysical and biochemical properties to epithelial morphogenesis , 2016, The Journal of cell biology.

[21]  E. White,et al.  Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids , 2015, Biology Open.

[22]  O. Klein,et al.  Transcriptome-wide Analysis Reveals Hallmarks of Human Intestine Development and Maturation In Vitro and In Vivo , 2015, Stem cell reports.

[23]  D. Johnston The Renaissance of Developmental Biology , 2015 .

[24]  J. Wells,et al.  Generating human intestinal tissues from pluripotent stem cells to study development and disease , 2015, The EMBO journal.

[25]  E. Alsberg,et al.  Dual Ionic and Photo-Crosslinked Alginate Hydrogels for Micropatterned Spatial Control of Material Properties and Cell Behavior. , 2015, Bioconjugate chemistry.

[26]  Gail H Deutsch,et al.  In vitro generation of human pluripotent stem cell derived lung organoids , 2015, eLife.

[27]  Ying Sun,et al.  An in vivo model of human small intestine using pluripotent stem cells , 2014, Nature Medicine.

[28]  Michael Schumacher,et al.  Modeling human development and disease in pluripotent stem cell-derived gastric organoids , 2014, Nature.

[29]  Jason R Spence,et al.  How to make an intestine , 2014, Development.

[30]  E. Stanley,et al.  Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney , 2013, Nature Cell Biology.

[31]  E. Alsberg,et al.  Biochemical and Physical Signal Gradients in Hydrogels to Control Stem Cell Behavior , 2013, Advanced materials.

[32]  Madeline A. Lancaster,et al.  Cerebral organoids model human brain development and microcephaly , 2013, Nature.

[33]  Takanori Takebe,et al.  Vascularized and functional human liver from an iPSC-derived organ bud transplant , 2013, Nature.

[34]  J. Wells,et al.  Generating human intestinal tissue from pluripotent stem cells in vitro , 2011, Nature Protocols.

[35]  T. Adachi,et al.  Self-organizing optic-cup morphogenesis in three-dimensional culture , 2011, Nature.

[36]  Elizabeth E. Hoskins,et al.  Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro , 2010, Nature.

[37]  E. Munson,et al.  Rheological Evaluation of Inter-grade and Inter-batch Variability of Sodium Alginate , 2010, AAPS PharmSciTech.

[38]  K. Kaestner,et al.  Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. , 2009, Developmental cell.

[39]  A. Maitra,et al.  A molecular scheme for improved characterization of human embryonic stem cell lines , 2006, BMC Biology.

[40]  David J Mooney,et al.  Alginate hydrogels as biomaterials. , 2006, Macromolecular bioscience.

[41]  K. Shull,et al.  Strain dependence of the viscoelastic properties of alginate hydrogels , 2004 .

[42]  H. Drexler,et al.  Efficient DNA fingerprinting method for the identification of cross-culture contamination of cell lines. , 1999, Human cell.

[43]  G. Forgacs,et al.  Viscoelastic properties of living embryonic tissues: a quantitative study. , 1998, Biophysical journal.

[44]  D. Mooney,et al.  Alginate: properties and biomedical applications. , 2012, Progress in polymer science.

[45]  D J Mooney,et al.  Alginate hydrogels as synthetic extracellular matrix materials. , 1999, Biomaterials.