Uncertainty Quantification of the Lifetime of Self-Healing Thermal Barrier Coatings Based on Surrogate Modelling of Thermal Cyclic Fracture and Healing

[1]  F. Chen,et al.  Thermal barrier coatings failure mechanism during the interfacial oxidation process under the interaction between interface by cohesive zone model and brittle fracture by phase-field , 2021 .

[2]  S. Turteltaub,et al.  Thermal cyclic behavior and lifetime prediction of self-healing thermal barrier coatings , 2021, International Journal of Solids and Structures.

[3]  S. M. Zakir Hossain,et al.  Bayesian optimization algorithm based support vector regression analysis for estimation of shear capacity of FRP reinforced concrete members , 2021, Appl. Soft Comput..

[4]  Qi Huang,et al.  Prediction of breakthrough curves in a fixed-bed column based on normalized Gudermannian and error functions , 2020 .

[5]  Dinesh Kumar,et al.  Efficient uncertainty quantification and management in the early stage design of composite applications , 2020 .

[6]  Yunbo Bai,et al.  A Simulation Study on the Crack Propagation Behavior of Nanostructured Thermal Barrier Coatings with Tailored Microstructure , 2020 .

[7]  P. Xiao,et al.  Investigation of the bond coat interface topography effect on lifetime, microstructure and mechanical properties of air-plasma sprayed thermal barrier coatings , 2020 .

[8]  Tong Xu,et al.  A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime , 2020 .

[9]  R. S. Mulik,et al.  Thermal Barrier Coatings—A State of the Art Review , 2020, Metals and Materials International.

[10]  Zhi-Yuan Wei,et al.  Comprehensive effects of TGO growth on the stress characteristic and delamination mechanism in lamellar structured thermal barrier coatings , 2020 .

[11]  Guanjun Yang,et al.  Gradient stiffening induced interfacial cracking and strain tolerant design in thermal barrier coatings , 2020 .

[12]  R. Arróyave,et al.  Uncertainty Quantification and Propagation in Computational Materials Science and Simulation-Assisted Materials Design , 2020, Integrating Materials and Manufacturing Innovation.

[13]  S. Turteltaub,et al.  Numerical Investigation into the Effect of Splats and Pores on the Thermal Fracture of Air Plasma-Sprayed Thermal Barrier Coatings , 2019, Journal of Thermal Spray Technology.

[14]  S. Zwaag,et al.  Computational investigation of porosity effects on fracture behavior of thermal barrier coatings , 2019, Ceramics International.

[15]  N. Petrinic,et al.  Predictions of the mechanical properties of unidirectional fibre composites by supervised machine learning , 2019, Scientific Reports.

[16]  P. Xiao,et al.  Damage evolution in a self‐healing air plasma sprayed thermal barrier coating containing self‐shielding MoSi 2 particles , 2019, Journal of the American Ceramic Society.

[17]  Kyoungsik Chang,et al.  Comparison of the Point-Collocation Non-Intrusive Polynomial (NIPC) and Non-Intrusive Spectral Projection (NISP) Methods for the γ-Rθ Transition Model , 2019, Applied Sciences.

[18]  S. Meguid,et al.  Temperature dependent dynamic growth of thermally grown oxide in thermal barrier coatings , 2019, Materials & Design.

[19]  Shaolin Li,et al.  Numerical study on the competitive cracking behavior in TC and interface for thermal barrier coatings under thermal cycle fatigue loading , 2019, Surface and Coatings Technology.

[20]  S. Zwaag,et al.  Modelling the fracture behaviour of thermal barrier coatings containing healing particles , 2018, Materials & Design.

[21]  S. Zwaag,et al.  A micromechanical fracture analysis to investigate the effect of healing particles on the overall mechanical response of a self‐healing particulate composite , 2018, Fatigue & Fracture of Engineering Materials & Structures.

[22]  Biswarup Bhattacharyya,et al.  A Critical Appraisal of Design of Experiments for Uncertainty Quantification , 2018 .

[23]  S. Zwaag,et al.  Protecting the MoSi2 healing particles for thermal barrier coatings using a sol-gel produced Al2O3 coating , 2018, Journal of the European Ceramic Society.

[24]  Ann-Sophie Farle,et al.  Determination of fracture strength and fracture energy of (metallo-) ceramics by a wedge loading methodology and corresponding cohesive zone-based finite element analysis , 2018, Engineering Fracture Mechanics.

[25]  Weiqi Wang,et al.  Numerical analyses of the residual stress and top coat cracking behavior in thermal barrier coatings under cyclic thermal loading , 2018, Engineering Fracture Mechanics.

[26]  Min Liu,et al.  High-temperature oxidation behavior and analysis of impedance spectroscopy of 7YSZ thermal barrier coating prepared by plasma spray-physical vapor deposition , 2017, Chinese Journal of Aeronautics.

[27]  S. Zwaag,et al.  A cohesive-zone crack healing model for self-healing materials , 2017 .

[28]  Y. Zhou,et al.  Models for predicting TGO growth to rough interface in TBCs , 2017 .

[29]  Khader M. Hamdia,et al.  Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions , 2017, International Journal of Fracture.

[30]  Yingzheng Liu,et al.  Finite Element Analysis of the Effects of Thermally Grown Oxide Thickness and Interface Asperity on the Cracking Behavior Between the Thermally Grown Oxide and the Bond Coat , 2017 .

[31]  Ke Yang,et al.  Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods: A review , 2016 .

[32]  Hans Petter Langtangen,et al.  Chaospy: An open source tool for designing methods of uncertainty quantification , 2015, J. Comput. Sci..

[33]  Sathiskumar A. Ponnusami,et al.  Cohesive-zone modelling of crack nucleation and propagation in particulate composites , 2015 .

[34]  T. Marrow,et al.  Multi-scale modeling of damage development in a thermal barrier coating , 2015 .

[35]  J. Pokluda,et al.  Stability of plasma-sprayed thermal barrier coatings: The role of the waviness of the bond coat and the thickness of the thermally grown oxide layer , 2015 .

[36]  R. Lopez,et al.  A non-intrusive methodology for the representation of crack growth stochastic processes , 2015 .

[37]  Tie-jun Wang,et al.  Interfacial delamination of double-ceramic-layer thermal barrier coating system , 2014 .

[38]  R. Eriksson,et al.  TBC bond coat–top coat interface roughness: Influence on fatigue life and modelling aspects , 2013 .

[39]  André T. Beck,et al.  Stochastic fracture mechanics using polynomial chaos , 2013 .

[40]  S. Turteltaub,et al.  Oxide growth and damage evolution in thermal barrier coatings , 2011 .

[41]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[42]  Bruno Sudret,et al.  Efficient computation of global sensitivity indices using sparse polynomial chaos expansions , 2010, Reliab. Eng. Syst. Saf..

[43]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[44]  E. Busso,et al.  The influence of bondcoat and topcoat mechanical properties on stress development in thermal barrier coating systems , 2009 .

[45]  S. Turteltaub,et al.  Damage growth triggered by interface irregularities in thermal barrier coatings , 2009 .

[46]  R. Herzog,et al.  Damage mechanisms and lifetime behavior of plasma-sprayed thermal barrier coating systems for gas turbines — Part II: Modeling , 2008 .

[47]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[48]  Bruno Sudret,et al.  A stochastic finite element procedure for moment and reliability analysis , 2006 .

[49]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[50]  R. Grandhi,et al.  Polynomial Chaos Expansion with Latin Hypercube Sampling for Estimating Response Variability , 2003 .

[51]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[52]  D. Coker,et al.  Finite Element Modelling of TBC Failure Mechanisms by Using XFEM and CZM , 2019, Procedia Structural Integrity.

[53]  K. Ogawa,et al.  Thermally Grown Oxide Growth Behavior and Its Impedance Properties of Thermal Barrier Coatings with Cold Sprayed and Low Pressure Plasma Sprayed Bond Coatings , 2013 .