PRESSURE

This paper presents the characteristics of the pressure fluctuation in the entrance region in solid-liquid flow. To investigate an axial developing process of the pressure fluctuation, six pressure transducers were set at intervals of 2m in the test pipe. It was found from the experiment that in the range of higher velocities, the maximum pressure fluctuation decreased as the distance from the feeder increased. That is, the maximum pressure fluctuation decreased as the flow developed. On the other hand, in the range of lower velocities, little effect of distance from the feeder on the maximum pressure fluctuation was obtained. Furthermore, it was confirmed that the periodicity in the auto-correlation function was not obtained in the entrance region, but as the flow developed, the obvious periodicity in the auto-correlation function was obtained in the range of lower velocities and higher solid concentration at the measuring point far from the feeder. This periodicity results in the movement of dune formed in the pipe. And it was found that in the entrance region, the maximum pressure fluctuation increased as the particle diameter increased, but the rate of increase of the maximum pressure fluctuation decreased as the distance from the feeder increased. When the flow developed fully, the maximum pressure fluctuation was not effected by the particle diameter. Dunes, Skewness, Flatness, Solid-Liquid

[1]  Lu Li,et al.  Nanoscience , 2015, Nanoscience.

[2]  Jiao Y. Y. Lin,et al.  Separating the configurational and vibrational entropy contributions in metallic glasses , 2017, Nature Physics.

[3]  A. Karma,et al.  Microstructure selection in thin-sample directional solidification of an Al-Cu alloy: In situ X-ray imaging and phase-field simulations , 2017 .

[4]  I. Silvera,et al.  Observation of the Wigner-Huntington transition to metallic hydrogen , 2016, Science.

[5]  N. Litchinitser,et al.  Orbital angular momentum microlaser , 2016, Science.

[6]  P. Juhás,et al.  Polymorphism in magic-sized Au144(SR)60 clusters , 2016, Nature Communications.

[7]  M. Harmer,et al.  Expanding time–temperature-transformation (TTT) diagrams to interfaces: A new approach for grain boundary engineering , 2016 .

[8]  G. Odette,et al.  Microstructural changes in a neutron-irradiated Fe–15 at.%Cr alloy , 2014 .

[9]  M. Harmer,et al.  Grain Boundary Complexions , 2014 .

[10]  S. Sobolev On the transition from diffusion-limited to kinetic-limited regimes of alloy solidification , 2013 .

[11]  Tiago F. T. Cerqueira,et al.  Sodium–gold binaries: novel structures for ionic compounds from an ab initio structural search , 2013 .

[12]  David L. Olmsted,et al.  Structural phase transformations in metallic grain boundaries , 2012, Nature Communications.

[13]  V. I. Troyan,et al.  On the fluctuation mechanism of melting of supported gold nanoclusters. , 2012, Journal of nanoscience and nanotechnology.

[14]  Ulrich Dahmen,et al.  New software tools for the calculation and display of isolated and attached interfacial-energy minimizing particle shapes , 2012, Journal of Materials Science.

[15]  W. Setyawan,et al.  Effects of transition metals on the grain boundary cohesion in tungsten , 2012 .

[16]  Yu Huang,et al.  Platinum nanocrystals selectively shaped using facet-specific peptide sequences. , 2011, Nature chemistry.

[17]  M. Jacobs,et al.  Thermodynamic properties and equation of state of fcc aluminum and bcc iron, derived from a lattice vibrational method , 2010, PCM 2010.

[18]  S. Foiles Temperature dependence of grain boundary free energy and elastic constants , 2010 .

[19]  Luc Tartar,et al.  The General Theory of Homogenization , 2010 .

[20]  A. Lawson,et al.  Physics of the Lindemann melting rule , 2009 .

[21]  M. Orio,et al.  Density functional theory , 2009, Photosynthesis Research.

[22]  W. Kleemann,et al.  TOPICAL REVIEW: Supermagnetism , 2009 .

[23]  John B. Goodenough,et al.  Goodenough-Kanamori rule , 2008, Scholarpedia.

[24]  L. Kestens,et al.  Transformation mechanism of α′-martensite in an austenitic Fe–Mn–C–N alloy , 2007 .

[25]  William L. Johnson,et al.  Rheology and Ultrasonic Properties of Metallic Glass-Forming Liquids: A Potential Energy Landscape Perspective , 2007 .

[26]  V. Gopalan,et al.  Defect–Domain Wall Interactions in Trigonal Ferroelectrics , 2007 .

[27]  C. Schick,et al.  Superheating in linear polymers studied by ultrafast nanocalorimetry , 2007, The European physical journal. E, Soft matter.

[28]  Mary Anne White,et al.  Recommendations for accurate heat capacity measurements using a Quantum Design physical property measurement system , 2007 .

[29]  D. Stauffer,et al.  Order-disorder phase transition in a cliquey social network , 2006, physics/0611153.

[30]  B. Woodfield,et al.  Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T = 15 K to T = 350 K , 2006 .

[31]  E. Boroński Positron-electron annihilation rates in an electron gas studied by variational Monte Carlo simulation , 2006 .

[32]  R. Rosenberg,et al.  Why is ice slippery , 2005 .

[33]  Robert W. Balluffi,et al.  Kinetics of Materials: Balluffi/Kinetics , 2005 .

[34]  T. Radetić,et al.  Observations of interface premelting at grain-boundary precipitates of Pb in Al , 2004 .

[35]  H. Fraser,et al.  Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys. , 2004, Biomaterials.

[36]  D. Wallace,et al.  Statistical Physics of Crystals and Liquids: A Guide to Highly Accurate Equations of State , 2003 .

[37]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[38]  Pablo G. Debenedetti,et al.  Supercooled liquids and the glass transition , 2001, Nature.

[39]  B. Fultz,et al.  The role of phonons in the thermodynamics of the martensitic transformation in NiTi , 2001 .

[40]  B. Fultz,et al.  Transmission electron microscopy and diffractometry of materials , 2001 .

[41]  M D Ediger,et al.  Spatially heterogeneous dynamics in supercooled liquids. , 2003, Annual review of physical chemistry.

[42]  L. Pasquini,et al.  Vibrational density of states of nanocrystalline iron and nickel , 2000 .

[43]  Paul F. McMillan,et al.  Relaxation in glassforming liquids and amorphous solids , 2000 .

[44]  B. Fultz,et al.  Heat capacity and microstructure of ordered and disordered Pd3V , 2000 .

[45]  B. Fultz,et al.  Vibrational density of states of nanocrystalline Ni3Fe , 1997 .

[46]  B. Fultz,et al.  Phonon density of states of nanocrystalline Fe prepared by high‐energy ball milling , 1996 .

[47]  B. Fultz,et al.  Average widths of grain boundaries in nanophase alloys synthesized by mechanical attrition , 1995 .

[48]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[49]  Schwarz,et al.  Thermodynamics of open two-phase systems with coherent interfaces. , 1995, Physical review letters.

[50]  Robert C. Bowman,et al.  The effect of tin on the degradation of LaNi5−ySny metal hydrides during thermal cycling , 1995 .

[51]  U. Herr,et al.  Vibrational behaviour of nanocrystalline Ni , 1995 .

[52]  R. Kikuchi,et al.  Numerical limit of the spinodal point , 1994 .

[53]  Y. Vohra,et al.  Optical response of very high density solid oxygen to 132 GPa , 1990 .

[54]  W. Petry Phonons at martensitic phase transitions of bcc-Ti, bcc-Zr and bcc-Hf , 1991 .

[55]  H. Levine,et al.  PATTERN SELECTION IN THREE DIMENSIONAL DENDRITIC GROWTH , 1988 .

[56]  Theodore Kaplan,et al.  Continuous growth model for interface motion during alloy solidification , 1988 .

[57]  W. Johnson,et al.  Entropy and enthalpy catastrophe as a stability limit for crystalline material , 1988, Nature.

[58]  B. Fultz Suppressed kinetics of short range ordering at low temperatures , 1987 .

[59]  D. Clarke On the Equilibrium Thickness of Intergranular Glass Phases in Ceramic Materials , 1987 .

[60]  H. Gleiter,et al.  Superheating of metal crystals , 1986 .

[61]  William L. Johnson,et al.  Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials , 1986 .

[62]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[63]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[64]  J. Cahn,et al.  A simple model for coherent equilibrium , 1984 .

[65]  V. M. Dwyer,et al.  The effect of short-range order on the vibrational entropy of one-dimensional chains , 1983 .

[66]  G. Stewart Measurement of low-temperature specific heat , 1983 .

[67]  T. Ichinokawa,et al.  Lattice vibrations and specific heat of a small particle , 1982 .

[68]  H. Bakker Numerical calculations of the change of the vibrational entropy due to disordering of a one- and two-dimensional ordered binary alloy , 1982 .

[69]  H. Bakker The Vibrational Entropy Change Associated with the Disordering of a Two-Dimensional Binary Alloy Using a Model of Nearest- and Next-Nearest-Neighbour Interactions , 1982 .

[70]  R. W. Siegel Positron Annihilation Spectroscopy , 1980 .

[71]  M. Goldstein,et al.  Viscous liquids and the glass transition. 9. Nonconfigurational contributions to the excess entropy of disordered phases , 1980 .

[72]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[73]  J. A. Taylor,et al.  Precipitation in AI-Cu-Mg-Ag casting alloy , 1978 .

[74]  A. Khachaturyan Ordering in substitutional and interstitial solid solutions , 1978 .

[75]  R. Kikuchi,et al.  Kinetics of order-disorder transformations in alloys , 1976 .

[76]  Dietrich Stauffer,et al.  Statistical theory of nucleation, condensation and coagulation , 1976 .

[77]  Martin Goldstein,et al.  Viscous liquids and the glass transition. V. Sources of the excess specific heat of the liquid , 1976 .

[78]  Rodger M. Walser,et al.  First phase nucleation in silicon–transition‐metal planar interfaces , 1976 .

[79]  D. Fontaine k-Space symmetry rules for order-disorder reactionsRegles de symetrie dans l'espace des k pour les transformations ordredesordreSymmetrieregeln im k-Raum für ordnungsübergänge , 1975 .

[80]  C. M. Wayman,et al.  Thermodynamics of thermoelastic martensitiC transformations , 1975 .

[81]  Ryoichi Kikuchi,et al.  Superposition approximation and natural iteration calculation in cluster‐variation method , 1974 .

[82]  P. C. Clapp A Localized Soft Mode Theory for Martensitic Transformations , 1973 .

[83]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[84]  C. M. Van Baal,et al.  Order-disorder transformations in a generalized Ising alloy , 1973 .

[85]  A. Seeger Investigation of point defects in equilibrium concentrations with particular reference to positron annihilation techniques , 1973 .

[86]  G. B. Olson,et al.  A MECHANISM FOR THE STRAIN-INDUCED NUCLEATION OF MARTENSITIC TRANSFORMATIONS* , 1972 .

[87]  R. Howard,et al.  Heat Capacity Measurements on Small Samples at Low Temperatures , 1972 .

[88]  J. Mahanty,et al.  Vibrational self-entropy of point defects in crystals , 1970 .

[89]  M. Hillert,et al.  The Regular Solution Model for Stoichiometric Phases and Ionic Melts. , 1970 .

[90]  N. Mott,et al.  Polarons in crystalline and non-crystalline materials , 2001 .

[91]  D. Emin,et al.  Studies of small-polaron motion IV. Adiabatic theory of the Hall effect , 1969 .

[92]  R. Feder,et al.  Equilibrium vacancy concentration in pure Pb and dilute Pb-Tl and Pb-In alloys , 1967 .

[93]  E. Gopal Specific Heats at Low Temperatures , 1966 .

[94]  R. Patterson,et al.  The crystallography and growth of partially-twinned martensite plates in Fe-Ni alloys , 1966 .

[95]  A. Bogers,et al.  Partial dislocations on the {110} planes in the B.C.C. lattice and the transition of the F.C.C. into the B.C.C. lattice , 1964 .

[96]  W. Mullins Stability of a Planar Interface During Solidification of a Dilute Binary Alloy , 1964 .

[97]  D. Kinderlehrer,et al.  Morphological Stability of a Particle Growing by Diffusion or Heat Flow , 1963 .

[98]  H. Kimura,et al.  Interaction of vacancies with Sn atoms and the rate of G-P zone formation in an AlCuSn alloy , 1961 .

[99]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[100]  P. Duwez,et al.  Non-crystalline Structure in Solidified Gold–Silicon Alloys , 1960, Nature.

[101]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[102]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[103]  J. Kanamori,et al.  Superexchange interaction and symmetry properties of electron orbitals , 1959 .

[104]  John B. Goodenough,et al.  An interpretation of the magnetic properties of the perovskite-type mixed crystals La1-xSrxCoO3-λ , 1958 .

[105]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[106]  J. Mackenzie,et al.  The crystallography of martensite transformations—IV body-centred cubic to orthorhombic transformations , 1957 .

[107]  G. Vineyard Frequency factors and isotope effects in solid state rate processes , 1957 .

[108]  T. Read,et al.  Cubic to Orthorhombic Diffusionless Phase Change— Experimental and Theoretical Studies of AuCd , 1955 .

[109]  J. D. Eshelby Distortion of a Crystal by Point Imperfections , 1954 .

[110]  J. Mackenzie,et al.  The crystallography of martensite transformations II , 1954 .

[111]  H. F. Kay,et al.  XCV. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties , 1949 .

[112]  W. K. Burton,et al.  Role of Dislocations in Crystal Growth , 1949, Nature.

[113]  W. Kauzmann The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures. , 1948 .

[114]  M. Avrami Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III , 1941 .

[115]  M. Avrami Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei , 1940 .

[116]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .