Bifurcations of Relaxation oscillations Near Folded saddles

Relaxation oscillations are periodic orbits of multiple time scale dynamical systems that contain both slow and fast segments. The slow–fast decomposition of these orbits is defined in the singular limit. Geometric methods in singular perturbation theory classify degeneracies of these decompositions that occur in generic one-parameter families of relaxation oscillations. This paper investigates the bifurcations that are associated with one type of degeneracy that occurs in systems with two slow variables, in which relaxation oscillations become homoclinic to a folded saddle.

[1]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[2]  É. Benoît,et al.  Canards et enlacements , 1990 .

[3]  W. D. Melo,et al.  ONE-DIMENSIONAL DYNAMICS , 2013 .

[4]  V. I. Arnol'd,et al.  Dynamical Systems V , 1994 .

[5]  A. Y. Kolesov,et al.  Asymptotic Methods in Singularly Perturbed Systems , 1994 .

[6]  D. Boulatov One-dimensional dynamics of QCD2 string , 1995, hep-th/9503048.

[7]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[8]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[9]  John Guckenheimer,et al.  Global bifurcations of periodic orbits in the forced Van der Pol equation , 2001 .

[10]  Mario di Bernardo,et al.  Nonlinear Dynamics and Chaos : Where do we go from here? , 2002 .

[11]  John Guckenheimer,et al.  Bifurcation and degenerate decomposition in multiple time scale dynamical systems , 2002 .

[12]  INSTITUTE OF PHYSICS PUBLISHING , 2005 .

[13]  John Guckenheimer,et al.  The Forced van der Pol Equation II: Canards in the Reduced System , 2003, SIAM J. Appl. Dyn. Syst..

[14]  John Guckenheimer,et al.  The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..

[15]  Martin Wechselberger,et al.  Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..

[16]  John Guckenheimer,et al.  Canards at Folded Nodes , 2005 .