Efficient iterative solution of finite element discretized nonsmooth minimization problems
暂无分享,去创建一个
[1] Tom Goldstein,et al. The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..
[2] R. Glowinski,et al. Numerical Methods for Nonlinear Variational Problems , 1985 .
[3] P. Lions,et al. Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .
[4] Richard G. Baraniuk,et al. Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..
[5] J. Hiriart-Urruty,et al. Fundamentals of Convex Analysis , 2004 .
[6] Yuan Shen,et al. On the O(1/t) convergence rate of Ye-Yuan's modified alternating direction method of multipliers , 2014, Appl. Math. Comput..
[7] Haim Brezis,et al. Sur la régularité de la solution d'inéquations elliptiques , 1968 .
[8] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[9] H. H. Rachford,et al. On the numerical solution of heat conduction problems in two and three space variables , 1956 .
[10] B. He,et al. Alternating Direction Method with Self-Adaptive Penalty Parameters for Monotone Variational Inequalities , 2000 .
[11] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[12] M. J. D. Powell,et al. A method for nonlinear constraints in minimization problems , 1969 .
[13] D. Gabay. Applications of the method of multipliers to variational inequalities , 1983 .
[14] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[15] Shiqian Ma,et al. Fast alternating linearization methods for minimizing the sum of two convex functions , 2009, Math. Program..
[16] Sören Bartels,et al. Numerical Methods for Nonlinear Partial Differential Equations , 2015 .
[17] M. Nikolova. An Algorithm for Total Variation Minimization and Applications , 2004 .
[18] Robert R. Meyer,et al. A variable-penalty alternating directions method for convex optimization , 1998, Math. Program..
[19] Bingsheng He,et al. Self-adaptive operator splitting methods for monotone variational inequalities , 2003, Numerische Mathematik.
[20] Bingsheng He,et al. On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers , 2014, Numerische Mathematik.
[21] Bingsheng He,et al. On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..
[22] Jonathan Eckstein. Splitting methods for monotone operators with applications to parallel optimization , 1989 .
[23] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[24] Yurii Nesterov,et al. Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.
[25] Xiaoming Yuan,et al. A sequential updating scheme of the Lagrange multiplier for separable convex programming , 2016, Math. Comput..
[26] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[27] Bingsheng He,et al. Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities , 1998, Oper. Res. Lett..
[28] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[29] Wotao Yin,et al. On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..
[30] Xiaoming Yuan,et al. An augmented Lagrangian based parallel splitting method for separable convex minimization with applications to image processing , 2014, Math. Comput..
[31] Ricardo H. Nochetto,et al. Discrete Total Variation Flows without Regularization , 2012, SIAM J. Numer. Anal..
[32] M. Hestenes. Multiplier and gradient methods , 1969 .