Homogenization results for the calcium dynamics in living cells

Via the periodic unfolding method, the effective behavior of a nonlinear system of coupled reaction–diffusion equations arising in the modeling of the dynamics of calcium ions in living cells is analyzed. We deal, at the microscale, with two reaction–diffusion equations governing the concentration of calcium ions in the endoplasmic reticulum and, respectively, in the cytosol, coupled through an interfacial exchange term. Depending on the magnitude of this term, various models arise at the macroscale. In particular, we obtain, at the limit, a bidomain model. Such a model is widely used for studying the dynamics of the calcium ions, which are recognized to be important intracellular messengers between the endoplasmic reticulum and the cytosol inside the biological cells.

[1]  Pranay Goel,et al.  Homogenization of the Cell Cytoplasm: The Calcium Bidomain Equations , 2006, Multiscale Model. Simul..

[2]  P. Donato,et al.  The periodic unfolding method for a class of imperfect transmission problems , 2011 .

[3]  P. Bisegna,et al.  Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues , 2004 .

[4]  Doina Cioranescu,et al.  The Periodic Unfolding Method in Homogenization , 2008, SIAM J. Math. Anal..

[5]  Claudia Timofte,et al.  Multiscale analysis of diffusion processes in composite media , 2013, Comput. Math. Appl..

[6]  G. I. Barenblatt,et al.  Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata] , 1960 .

[7]  Malte A. Peter,et al.  Homogenization of a nonlinear multiscale model of calcium dynamics in biological cells , 2014 .

[8]  M. Neuss-Radu,et al.  A multiscale Galerkin approach for a class of nonlinear coupled reaction-diffusion systems in complex media , 2010 .

[9]  Claudia Timofte,et al.  Homogenization results for ionic transport in periodic porous media , 2014, Comput. Math. Appl..

[10]  Hans-Karl Hummel,et al.  Homogenization for heat transfer in polycrystals with interfacial resistances , 2000 .

[11]  Jesús Ildefonso Díaz Díaz,et al.  EFFECTIVE CHEMICAL PROCESSES IN POROUS MEDIA , 2003 .

[12]  Piero Colli Franzone,et al.  Multiscale Modeling for the Bioelectric Activity of the Heart , 2005, SIAM J. Math. Anal..

[13]  Daniele Andreucci,et al.  On a hierarchy of models for electrical conduction in biological tissues , 2006 .

[14]  Doina Cioranescu,et al.  The Periodic Unfolding Method in Domains with Holes , 2012, SIAM J. Math. Anal..

[15]  H. I. Ene,et al.  Model of diffusion in partially fissured media , 2002 .

[16]  Jean-Louis Auriault,et al.  Macroscopic modelling of heat transfer in composites with interfacial thermal barrier , 1994 .

[17]  C. Henriquez Simulating the electrical behavior of cardiac tissue using the bidomain model. , 1993, Critical reviews in biomedical engineering.

[18]  Willi Jäger,et al.  Effective Transmission Conditions for Reaction-Diffusion Processes in Domains Separated by an Interface , 2007, SIAM J. Math. Anal..

[19]  James P. Keener,et al.  Mathematical physiology , 1998 .

[20]  Doina Cioranescu,et al.  Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions , 2007, Asymptot. Anal..

[21]  Claudia Timofte,et al.  Multiscale analysis in nonlinear thermal diffusion problems in composite structures , 2010 .

[22]  M. Michalak,et al.  Calcium binding chaperones of the endoplasmic reticulum. , 2009, General physiology and biophysics.