An Extension of the Blow-up Lemma to Arrangeable Graphs
暂无分享,去创建一个
Yoshiharu Kohayakawa | Julia Böttcher | Anusch Taraz | Andreas Würfl | Y. Kohayakawa | Julia Böttcher | A. Taraz | Andreas Würfl
[1] Vojtech Rödl,et al. The Ramsey number of a graph with bounded maximum degree , 1983, J. Comb. Theory B.
[2] Hal A. Kierstead,et al. Planar Graph Coloring with an Uncooperative Partner , 1994, Planar Graphs.
[3] Richard H. Schelp,et al. Graphs with Linearly Bounded Ramsey Numbers , 1993, J. Comb. Theory, Ser. B.
[4] János Komlós,et al. Proof of a Packing Conjecture of Bollobás , 1995, Combinatorics, Probability and Computing.
[5] Noga Alon,et al. AlmostH-factors in dense graphs , 1992, Graphs Comb..
[6] Gábor N. Sárközy,et al. On the square of a Hamiltonian cycle in dense graphs , 1996, Random Struct. Algorithms.
[7] Gábor N. Sárközy,et al. An algorithmic version of the blow-up lemma , 1998 .
[8] Gábor N. Sárközy,et al. On the Pósa-Seymour conjecture , 1998 .
[9] Vojtech Rödl,et al. Perfect Matchings in ε-Regular Graphs and the Blow-Up Lemma , 1999, Comb..
[10] J. Komlos. The Blow-up Lemma , 1999, Combinatorics, Probability and Computing.
[11] Vojtech Rödl,et al. An Algorithmic Regularity Lemma for Hypergraphs , 2000, SIAM J. Comput..
[12] János Komlós,et al. Tiling Turán Theorems , 2000, Comb..
[13] Svante Janson,et al. Random graphs , 2000, ZOR Methods Model. Oper. Res..
[14] Oliver Riordan,et al. Spanning Subgraphs of Random Graphs , 2000, Combinatorics, Probability and Computing.
[15] Daniela Kühn,et al. Large planar subgraphs in dense graphs , 2005, J. Comb. Theory, Ser. B.
[16] Alexandr V. Kostochka,et al. On Equitable Coloring of d-Degenerate Graphs , 2005, SIAM J. Discret. Math..
[17] D. Osthus,et al. Spanning triangulations in graphs , 2005 .
[18] Michael R. Capalbo,et al. Sparse universal graphs for bounded-degree graphs , 2007 .
[19] M. Schacht,et al. Proof of the bandwidth conjecture of Bollobás and Komlós , 2009 .
[20] D. Kuhn,et al. Surveys in Combinatorics 2009: Embedding large subgraphs into dense graphs , 2009, 0901.3541.
[21] Daniela Kühn,et al. The minimum degree threshold for perfect graph packings , 2009, Comb..
[22] Hao Huang,et al. Bandwidth theorem for random graphs , 2012, J. Comb. Theory, Ser. B.
[23] Peter Allen,et al. Maximum Planar Subgraphs in Dense Graphs , 2013, Electron. J. Comb..
[24] Vojtech Rödl,et al. Arrangeability and Clique Subdivisions , 2013, The Mathematics of Paul Erdős II.
[25] Julia Böttcher,et al. Spanning embeddings of arrangeable graphs with sublinear bandwidth , 2013, Random Struct. Algorithms.