An Extension of the Blow-up Lemma to Arrangeable Graphs

The blow-up lemma established by Komlos, Sarkozy, and Szemeredi in 1997 is an important tool for the embedding of spanning subgraphs of bounded maximum degree. Here we prove several generalizations of this result concerning the embedding of $a$-arrangeable graphs, where a graph is called $a$-arrangeable if its vertices can be ordered in such a way that the neighbors to the right of any vertex $v$ have at most $a$ neighbors to the left of $v$ in total. Examples of arrangeable graphs include planar graphs and, more generally, graphs without a $K_s$-subdivision for constant $s$. Our main result shows that $a$-arrangeable graphs with maximum degree at most $\sqrt{n}/\log n$ can be embedded into corresponding systems of superregular pairs. This is optimal up to the logarithmic factor. We also present two applications. We prove that any large enough graph $G$ with minimum degree at least $\big(\frac{r-1}{r}+\gamma\big)n$ contains an $F$-factor of every $a$-arrangeable $r$-chromatic graph $F$ with at most $\xi n...

[1]  Vojtech Rödl,et al.  The Ramsey number of a graph with bounded maximum degree , 1983, J. Comb. Theory B.

[2]  Hal A. Kierstead,et al.  Planar Graph Coloring with an Uncooperative Partner , 1994, Planar Graphs.

[3]  Richard H. Schelp,et al.  Graphs with Linearly Bounded Ramsey Numbers , 1993, J. Comb. Theory, Ser. B.

[4]  János Komlós,et al.  Proof of a Packing Conjecture of Bollobás , 1995, Combinatorics, Probability and Computing.

[5]  Noga Alon,et al.  AlmostH-factors in dense graphs , 1992, Graphs Comb..

[6]  Gábor N. Sárközy,et al.  On the square of a Hamiltonian cycle in dense graphs , 1996, Random Struct. Algorithms.

[7]  Gábor N. Sárközy,et al.  An algorithmic version of the blow-up lemma , 1998 .

[8]  Gábor N. Sárközy,et al.  On the Pósa-Seymour conjecture , 1998 .

[9]  Vojtech Rödl,et al.  Perfect Matchings in ε-Regular Graphs and the Blow-Up Lemma , 1999, Comb..

[10]  J. Komlos The Blow-up Lemma , 1999, Combinatorics, Probability and Computing.

[11]  Vojtech Rödl,et al.  An Algorithmic Regularity Lemma for Hypergraphs , 2000, SIAM J. Comput..

[12]  János Komlós,et al.  Tiling Turán Theorems , 2000, Comb..

[13]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[14]  Oliver Riordan,et al.  Spanning Subgraphs of Random Graphs , 2000, Combinatorics, Probability and Computing.

[15]  Daniela Kühn,et al.  Large planar subgraphs in dense graphs , 2005, J. Comb. Theory, Ser. B.

[16]  Alexandr V. Kostochka,et al.  On Equitable Coloring of d-Degenerate Graphs , 2005, SIAM J. Discret. Math..

[17]  D. Osthus,et al.  Spanning triangulations in graphs , 2005 .

[18]  Michael R. Capalbo,et al.  Sparse universal graphs for bounded-degree graphs , 2007 .

[19]  M. Schacht,et al.  Proof of the bandwidth conjecture of Bollobás and Komlós , 2009 .

[20]  D. Kuhn,et al.  Surveys in Combinatorics 2009: Embedding large subgraphs into dense graphs , 2009, 0901.3541.

[21]  Daniela Kühn,et al.  The minimum degree threshold for perfect graph packings , 2009, Comb..

[22]  Hao Huang,et al.  Bandwidth theorem for random graphs , 2012, J. Comb. Theory, Ser. B.

[23]  Peter Allen,et al.  Maximum Planar Subgraphs in Dense Graphs , 2013, Electron. J. Comb..

[24]  Vojtech Rödl,et al.  Arrangeability and Clique Subdivisions , 2013, The Mathematics of Paul Erdős II.

[25]  Julia Böttcher,et al.  Spanning embeddings of arrangeable graphs with sublinear bandwidth , 2013, Random Struct. Algorithms.