Grey-box techniques for the identification of a controlled gene expression model

The aim of this paper is to propose a computationally efficient technique for the identification of stochastic biochemical networks, involving only zero and first order reactions, from distribution measurements of the cell population. The moments of the species in such networks evolve according to an affine system, hence the use of grey-box identification methods is suggested. The performance of existing methods and of a new method, based on the transfer function computation, is compared using as benchmark a standard gene expression model. The developed discussion is of interest for the general grey-box identification problem.

[1]  Lennart Ljung,et al.  Perspectives on system identification , 2010, Annu. Rev. Control..

[2]  D. Gillespie A rigorous derivation of the chemical master equation , 1992 .

[3]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[4]  Uwe Helmke,et al.  Global identifiability of a simple linear model for gene expression analysis , 2013, 52nd IEEE Conference on Decision and Control.

[5]  H. Shapiro Practical Flow Cytometry: Shapiro/Flow Cytometry 4e , 2005 .

[6]  Suresh Kumar Poovathingal,et al.  Global parameter estimation methods for stochastic biochemical systems , 2010, BMC Bioinformatics.

[7]  Brian Munsky,et al.  Listening to the noise: random fluctuations reveal gene network parameters , 2009, Molecular systems biology.

[8]  J. Lygeros,et al.  Moment-based inference predicts bimodality in transient gene expression , 2012, Proceedings of the National Academy of Sciences.

[9]  M. Khammash,et al.  The finite state projection algorithm for the solution of the chemical master equation. , 2006, The Journal of chemical physics.

[10]  John Lygeros,et al.  Identifying stochastic biochemical networks from single-cell population experiments: A comparison of approaches based on the Fisher information , 2013, 52nd IEEE Conference on Decision and Control.

[11]  M. Khammash,et al.  Identification from stochastic cell-to-cell variation: a genetic switch case study. , 2010, IET systems biology.

[12]  John Lygeros,et al.  Designing experiments to understand the variability in biochemical reaction networks , 2013, Journal of The Royal Society Interface.

[13]  J Timmer,et al.  Parameter estimation in stochastic biochemical reactions. , 2006, Systems biology.

[14]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[15]  J. Ramos,et al.  A Null-Space-Based Technique for the Estimation of Linear-Time Invariant Structured State-Space Representations , 2012 .

[16]  Darren J. Wilkinson,et al.  Bayesian inference for a discretely observed stochastic kinetic model , 2008, Stat. Comput..

[17]  F. Fages,et al.  Long-term model predictive control of gene expression at the population and single-cell levels , 2012, Proceedings of the National Academy of Sciences.

[18]  Eugenio Cinquemani,et al.  Identification of biological models from single-cell data: A comparison between mixed-effects and moment-based inference , 2013, 2013 European Control Conference (ECC).

[19]  A. Oudenaarden,et al.  Cellular Decision Making and Biological Noise: From Microbes to Mammals , 2011, Cell.

[20]  Shinji Hara,et al.  Efficient parameter identification for stochastic biochemical networks using a reduced-order realization , 2013, 2013 European Control Conference (ECC).

[21]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[22]  Mario di Bernardo,et al.  Analysis, design and implementation of a novel scheme for in-vivo control of synthetic gene regulatory networks , 2011, Autom..

[23]  Lennart Ljung,et al.  Estimate Physical Parameters by Black Box Modeling , 2003 .

[24]  J. Paulsson Summing up the noise in gene networks , 2004, Nature.

[25]  D. Pincus,et al.  In silico feedback for in vivo regulation of a gene expression circuit , 2011, Nature Biotechnology.

[26]  Howard M. Shapiro,et al.  Practical Flow Cytometry , 1985 .

[27]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[28]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[29]  Chang Hyeong Lee,et al.  A moment closure method for stochastic reaction networks. , 2009, The Journal of chemical physics.

[30]  Pablo A. Parrilo,et al.  Initialization of Physical Parameter Estimates , 2003 .

[31]  J. Hespanha Moment closure for biochemical networks , 2008, 2008 3rd International Symposium on Communications, Control and Signal Processing.