Solar grade silicon production: A review of kinetic, thermodynamic and fluid dynamics based continuum scale modeling

Abstract The rapid growth in silicon photovoltaics deployment has led to increased research focus on the energy and capital intensive refining of solar grade silicon for improved environmental, production and economic benefits. As this process consists of a number of steps taking place in multi-phase reacting systems with complex fluid and energy flows, models can be an important tool for mechanistic understanding, design and optimization. This paper reviews models for the most widely implemented refining techniques and classifies them into two broad categories; those relating to the synthesis of volatile Si based compounds and those relating to the deposition of volatile silicon based compounds. Within each category, models are further divided according to the reactor type or physical process which they are examining. These models typically use computational techniques with various combinations of theory for obtaining chemical thermodynamics, chemical kinetics, fluid mechanics and heat and mass transfer information for a system. The system definition, main assumptions, computational techniques and main results for each study are presented. There is also a brief review of ab initio atomistic studies for this area along with a discussion for future research. This work should help researchers in selecting appropriate physical and chemical models for investigating solar grade silicon refining or further developing their own models.

[1]  Zhanying Yu,et al.  Fluid Dynamic Simulations on Polysilicon Production , 2013 .

[2]  Marco Andreoli,et al.  A mathematical model for silicon chlorination , 2003 .

[3]  Michael E. Coltrin,et al.  Si Deposition Rates in a Two‐Dimensional CVD Reactor and Comparisons with Model Calculations , 1990 .

[4]  G. C. Hsu,et al.  Fines in Fluidized Bed Silane Pyrolysis , 1984 .

[5]  P. J. O'rourke,et al.  A model for collisional exchange in gas/liquid/solid fluidized beds , 2009 .

[6]  S. K. Iya,et al.  Heterogeneous Decomposition of Silane in a Fixed Bed Reactor , 1982 .

[7]  W. Heywang,et al.  Twenty five years of semiconductor‐grade silicon , 1981 .

[8]  Mark T. Swihart,et al.  On the mechanism of homogeneous decomposition of the chlorinated silanes. Chain reactions propagated by divalent silicon species , 1998 .

[9]  Toshinori Kojima,et al.  CHEMICAL VAPOR DEPOSITION AND HOMOGENEOUS NUCLEATION IN MONOSILANE PYROLYSIS WITHIN INTERPARTICLE SPACES -APPLICATION OF FINES FORMATION ANALYSIS TO FLUIDIZED BED CVD- , 1988 .

[10]  Francine Fayolle Analyse et modélisation des dépots d'oxyde de silicium par procédé LPCVD , 1993 .

[11]  Francine Battaglia,et al.  Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 3. Reaction rate constant calculations. , 2010, The journal of physical chemistry. A.

[12]  Donald P. Greenberg,et al.  The hemi-cube: a radiosity solution for complex environments , 1985, SIGGRAPH.

[13]  Hao Yin Ni,et al.  Computational Results Show Gas Phase Reactions Have Great Impact on the Deposition Rate of Silicon in Siemens CVD Reactors , 2015 .

[14]  Jing-Bo Wang,et al.  Theoretical study on the SiH4−nCln (n = 0–4) reaction mechanisms for polysilicon production process , 2014 .

[15]  Tetsuya Tsuda,et al.  Improving Purity and Process Volume During Direct Electrolytic Reduction of Solid SiO2 in Molten CaCl2 for the Production of Solar‐Grade Silicon , 2013 .

[16]  Eivind J. Øvrelid,et al.  Solar Silicon Processes : Technologies, Challenges, and Opportunities , 2016 .

[17]  A. D. Gosman,et al.  Two calculation procedures for steady, three-dimensional flows with recirculation , 1973 .

[18]  Carl L. Yaws,et al.  New technologies for solar energy silicon - Cost analysis of BCL process , 1979 .

[19]  Palligarnai T. Vasudevan,et al.  How to Estimate Utility Costs , 2006 .

[20]  D. Gidaspow Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions , 1994 .

[21]  Tengfei Cao,et al.  Numerical study of Si nanoparticle formation by SiCl4 hydrogenation in RF plasma , 2016 .

[22]  Ahmed Dkhissi,et al.  A theoretical study of standard heat of formation of systems involving in the zinc reduction of silicon tetrachloride , 2014, Theoretical Chemistry Accounts.

[23]  张攀,et al.  Effect of Boundary Layers on Polycrystalline Silicon Chemical Vapor Deposition in a Trichlorosilane and Hydrogen System , 2011 .

[24]  Nicolas Reuge,et al.  Modeling of Silicon CVD into Agglomerates of Sub-micrometer-size Particles in a Fluidized Bed† , 2011 .

[25]  Gret Hsu Fluidized-bed development at JPL , 1986 .

[26]  Yang Yuan,et al.  Reactive Distillation Columns with Multiple Reactive Sections: A Case Study on the Disproportionation of Trichlorosilane to Silane , 2017 .

[27]  L. Johanson,et al.  Characteristics of gas pockets in fluidized beds , 1958 .

[28]  B. Erik Ydstie,et al.  Size distribution modeling for fluidized bed solar-grade silicon production☆ , 2006 .

[29]  Xun Huang,et al.  Reactive Distillation-Aided Ultrapure Silane Production from Trichlorosilane: Process Simulation and Optimization , 2017 .

[30]  C. Wen,et al.  A generalized method for predicting the minimum fluidization velocity , 1966 .

[31]  Hitoshi Habuka,et al.  Nonlinear increase in silicon epitaxial growth rate in a SiHCl3H2 system under atmospheric pressure , 1997 .

[32]  Paul E. Ege,et al.  Multi‐scale Modeling and Constrained Sensitivity Analysis of Particulate CVD Systems , 2007 .

[33]  Juan Du,et al.  Modeling and control of particulate processes and application to poly-silicon production , 2012 .

[34]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[35]  Zhi Feng Nie,et al.  Numerical Simulation of Polysilicon Chemical Vapor Deposition in Siemens Reactor , 2015 .

[36]  Juan Du,et al.  Modeling and control of solar‐grade silicon production in a fluidized bed reactor , 2014 .

[37]  Kemei Pei,et al.  Ab initio and kinetic calculations for the reactions of Cl with SiHnCl4−n (n=1,2,3,4) , 2004 .

[38]  Ranko Goic,et al.  review of solar photovoltaic technologies , 2011 .

[39]  Antonio Luque,et al.  Temperature homogeneity of polysilicon rods in a Siemens reactor , 2007 .

[40]  Yanqing Hou,et al.  Electric heating of the silicon rods in Siemens reactor , 2015 .

[41]  Jihai Duan,et al.  Technical Challenges and Progress in Fluidized Bed Chemical Vapor Deposition of Polysilicon , 2011 .

[42]  Xun Huang,et al.  Reactive Distillation Column for Disproportionation of Trichlorosilane to Silane: Reducing Refrigeration Load with Intermediate Condensers , 2013 .

[43]  M. C. Melaaen,et al.  Chemical vapor deposition of silicon from silane: Review of growth mechanisms and modeling/scaleup of fluidized bed reactors , 2012 .

[44]  Maurizio Masi,et al.  Reduced order model for the CVD of epitaxial silicon from silane and chlorosilanes , 2001 .

[45]  Robert J. Kee,et al.  A Mathematical Model of the Fluid Mechanics and Gas‐Phase Chemistry in a Rotating Disk Chemical Vapor Deposition Reactor , 1989 .

[46]  John Houseman,et al.  Silicon particle growth in a fluidized‐bed reactor , 1987 .

[47]  Fang Liu,et al.  Hydrodynamic behaviors of an internally circulating fluidized bed with wide-size-distribution particles for preparing polysilicon granules , 2015 .

[48]  G. C. Hsu,et al.  Chemical Vapor Deposition of Silicon from Silane Pyrolysis , 1977 .

[49]  Octave Levenspiel,et al.  Fluidized reactor models. 1. For bubbling beds of fine, intermediate, and large particles. 2. For the lean phase: freeboard and fast fluidization , 1990 .

[50]  Nasrudin Abd Rahim,et al.  Progress in solar PV technology: Research and achievement , 2013 .

[51]  Akio Fuwa,et al.  Kinetics of the Conversion of Silicon Tetrachloride into Trichlorosilane Obtained through the Temperature Control along a Plug-Flow Reactor , 2016 .

[52]  Caixia Chen,et al.  Modeling and simulation of silicon epitaxial growth in Siemens CVD reactor , 2014 .

[53]  Gøran Bye,et al.  Solar grade silicon: Technology status and industrial trends , 2014 .

[54]  Kai Guo,et al.  Numerical simulation of multiple polysilicon CVD reactors connected in series using CFD method , 2015 .

[55]  D. Mortensen,et al.  3D dynamic simulation of heat transfer and melt flow in an inductively heated crystallization furnace for mc-silicon with PID temperature control , 2013 .

[56]  M. Syamlal,et al.  A numerical model of silane pyrolysis in a gas-solids fluidized bed , 1998 .

[57]  Hiroshi Komiyama,et al.  Reaction of Si with HCl to Form Chlorosilanes Time Dependent Nature and Reaction Model , 2004 .

[58]  T. R. Hogness,et al.  The Thermal Decomposition of Silane , 1936 .

[59]  Rohatgi Silicon production in a fluidized bed reactor: Final report , 1986 .

[60]  Juan Du,et al.  Multi-scale modeling and control of fluidized beds for the production of solar grade silicon ☆ , 2010 .

[61]  Kouji Yasuda,et al.  Processes for Production of Solar‐Grade Silicon Using Hydrogen Reduction and/or Thermal Decomposition , 2014 .

[62]  Yueshu Gu,et al.  Direct ab Initio Dynamics Studies of the Reactions of H with SiH4-nCln (n = 1−3) , 2002 .

[63]  Akio Fuwa,et al.  Hydrogenation Reactions and Their Kinetics for SiCl 4 (g)–H 2 (g) and SiCl 4 (g)–Si(s)–H 2 (g) Systems Using a Fixed Bed Type Reactor , 1992 .

[64]  Akio Fuwa,et al.  Kinetic study of silicon precipitation from SiHCl3 , 1994 .

[65]  Dimitrios Maroudas,et al.  Kinetic Monte Carlo simulations of surface growth during plasma deposition of silicon thin films. , 2009, The Journal of chemical physics.

[66]  Mark T. Swihart,et al.  THERMOCHEMISTRY AND THERMAL DECOMPOSITION OF THE CHLORINATED DISILANES (SI2HNCL6-N, N = 0-6) STUDIED BY AB INITIO MOLECULAR ORBITAL METHODS , 1997 .

[67]  Seung Hyun Kim,et al.  Gas Nozzle Effect on the Deposition of Polysilicon by Monosilane Siemens Reactor , 2012 .

[68]  Nicolas Reuge,et al.  Multifluid Eulerian modelling of a silicon Fluidized Bed Chemical Vapor Deposition process: Analysis of various kinetic models , 2009 .

[69]  H. Bernhard Schlegel,et al.  An ab initio study of the thermal decomposition of dichlorosilane , 1997 .

[70]  Chris R. Kleijn,et al.  Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition : a benchmark solution , 2000 .

[71]  M. Syamlal,et al.  Fluid dynamic simulation of O3 decomposition in a bubbling fluidized bed , 2003 .

[72]  H. Bernhard Schlegel,et al.  An ab initio MO study of the thermal decomposition of chlorinated monosilanes, SiH4-nCln (n = 0-4) , 1993 .

[73]  Liang-Shih Fan,et al.  Characteristics of fluidization at high pressure , 1984 .

[74]  Pei Zhai,et al.  Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems. , 2010, Environmental science & technology.

[75]  Yanqing Hou,et al.  Thermodynamic behaviors of SiCl2 in silicon deposition by gas phase zinc reduction of silicon tetrachloride , 2015 .

[76]  Wen-De Xiao,et al.  Silane Pyrolysis to Silicon Rod in a Bell-Jar Reactor at High Temperature and Pressure: Modeling and Simulation , 2016 .

[77]  Zheqing Huang,et al.  Numerical Solution for Radiative Heat Transfer in a Novel Polysilicon CVD Reactor , 2013 .

[78]  Maurizio Masi,et al.  Modeling of flame assisted chemical vapor deposition of silicon films , 2011 .

[79]  Jijun Wu,et al.  Thermodynamic Estimation of Silicon Tetrachloride to Trichlorosilane by a Low Temperature Hydrogenation Technique , 2015, Silicon.

[80]  Si-Si Liu,et al.  Numerical simulations of particle growth in a silicon-CVD fluidized bed reactor via a CFD–PBM coupled model , 2014 .

[81]  D. Geldart Types of gas fluidization , 1973 .

[82]  Robert J. Kee,et al.  A Mathematical Model of Silicon Chemical Vapor Deposition Further Refinements and the Effects of Thermal Diffusion , 1986 .

[83]  Xigang Yuan,et al.  Development of a Polysilicon Chemical Vapor Deposition Reactor Using the Computational Fluid Dynamics Method , 2013 .

[84]  Joachim Werther,et al.  Scale-up modeling for fluidized bed reactors , 1992 .

[85]  Guanghui Cheng,et al.  Effect of Boundary Layers on Polycrystalline Silicon Chemical Vapor Deposition in a Trichlorosilane and Hydrogen System , 2011 .

[86]  S. K. Tyagi,et al.  Recent advances in solar photovoltaic systems for emerging trends and advanced applications , 2016 .

[87]  M. Streat,et al.  Mass transfer in fixed and fluidized beds , 1985 .

[88]  Wei-Jie Ding,et al.  CuCl-Catalyzed Hydrogenation of Silicon Tetrachloride in the Presence of Silicon: Mechanism and Kinetic Modeling , 2014 .

[89]  Takao Masuda,et al.  Growth Kinetics of Polycrystalline Silicon from Silane by Thermal Chemical Vapor Deposition Method , 1990 .

[90]  Wei-Jie Ding,et al.  Hydrogenation of Silicon Tetrachloride in the Presence of Silicon: Thermodynamic and Experimental Investigation , 2014 .

[91]  K. Kato,et al.  Bubble assemblage model for fluidized bed catalytic reactors , 1969 .

[92]  Hallvard G. Fjær,et al.  Crystallization Furnace Modeling Including Coupled Heat and Fluid Flow, Stresses and Deformations , 2013 .

[93]  Anuj Srivastava,et al.  Analysis of a frictional-kinetic model for gas-particle flow , 2003 .

[94]  Xin-Peng Yu,et al.  Direct Ab Initio Dynamics Studies of the Reaction Paths and Rate Constants of Hydrogen Atom with Germane and Silane , 2000 .

[95]  James M. Parker Validation of CFD Model for Polysilicon Deposition and Production of Silicon Fines in a Silane Deposition FBR , 2011 .

[96]  Srinivas Palanki,et al.  Modeling the hydrochlorination reaction in a laboratory-scale fluidized bed reactor , 2016 .

[97]  C. del Cañizo,et al.  Deposition reactors for solar grade silicon: a comparative thermal analysis of a Siemens reactor and a fluidized bed reactor , 2015 .

[98]  P. Ho,et al.  Chemical Kinetics for Modeling Silicon Epitaxy from Chlorosilanes , 1998 .

[99]  Huang Guoqiang,et al.  Simulation of Reactive Distillation Process for Monosilane Production via Redistribution of Trichlorosilane , 2014 .

[100]  V. M. Ivanov,et al.  Approaches to hydrogenation of silicon tetrachloride in polysilicon manufacture , 2011 .

[101]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .

[102]  Jong Hyun Jeong,et al.  Computational Fluid Dynamics Modeling of Mono-Silane Siemens Reactor , 2012 .

[103]  Qingfeng Zeng,et al.  Thermodynamics of the gas-phase reactions in chemical vapor deposition of silicon carbide with methyltrichlorosilane precursor , 2008 .

[104]  Merete Tangstad,et al.  Vacuum Refining of Molten Silicon , 2012, Metallurgical and Materials Transactions B.

[105]  D. Pera,et al.  Inline fast CVD sysyem for continuous production of silicon ribbons for solar cells by the SDS process , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[106]  B. Erik Ydstie,et al.  Silicon solar cell production , 2011, Comput. Chem. Eng..

[107]  Christopher E. Dateo,et al.  Thermal Decomposition Pathways and Rates for Silane, Chlorosilane, Dichlorosilane, and Trichlorosilane , 2001 .

[108]  Hyung Hee Cho,et al.  Effect of extended single/multi-jet nozzles in a fluidized bed reactor on growth of granular polysilicon , 2014 .

[109]  Stephen B. Pope,et al.  Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation , 1997 .

[110]  Milorad P. Dudukovic,et al.  Chemical vapor deposition and homogeneous nucleation in fluidized bed reactors: silicon from silane , 1986 .

[111]  Erik Stensrud Marstein,et al.  Development of fluidized bed reactors for silicon production , 2010 .

[112]  Christopher E. Dateo,et al.  Reactions of SiCl2 and SiHCl with H and Cl atoms , 2002 .

[113]  Maurizio Masi,et al.  Analysis of the gas phase reactivity of chlorosilanes. , 2013, The journal of physical chemistry. A.

[114]  Bjørn F. Magnussen,et al.  THE EDDY DISSIPATION CONCEPT A BRIDGE BETWEEN SCIENCE AND TECHNOLOGY , 2005 .

[115]  Antonio Luque,et al.  Radiative energy loss in a polysilicon CVD reactor , 2011 .

[116]  Hitoshi Habuka,et al.  Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3H2 system under atmospheric pressure , 1996 .

[117]  Antonio Luque,et al.  Chemical Vapor Deposition Model of Polysilicon in a Trichlorosilane and Hydrogen System , 2008 .

[118]  Muyu Zhao,et al.  Determining the number of independent components by Brinkley's method , 1992 .

[119]  D. Brian Spalding,et al.  Numerical computation of multi-phase fluid flow and heat transfer , 1980 .

[120]  M. Modest Radiative heat transfer , 1993 .

[121]  M. Bellmann,et al.  A novel method for gas flow and impurity control in directional solidification of multi-crystalline silicon , 2014 .

[122]  Xin Wang,et al.  Two-dimensional temperature distribution in fluidized bed reactors for synthesizing trichlorosilane , 2011 .

[123]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[124]  Antonio Luque,et al.  Heat losses in a CVD reactor for polysilicon production: Comprehensive model and experimental validation , 2014 .

[125]  Akio Fuwa,et al.  Effects of cluster size on calculation of activation energies of silicon surface reactions with H2 and HCl , 2015 .

[126]  Maurizio Masi,et al.  Kinetics of SiHCl3 chemical vapor deposition and fluid dynamic simulations. , 2011, Journal of nanoscience and nanotechnology.

[127]  Mitsuo Koshi,et al.  Channel specific rate constants relevant to the thermal decomposition of disilane. , 2005, The journal of physical chemistry. A.

[128]  Sergey M. Karabanov,et al.  Mathematical modeling and experimental research of the method of plasma chemical purification of metallurgical-grade silicon , 2016, 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC).

[129]  Stephen J. Clarson,et al.  Pathways to Solar Grade Silicon , 2015, Silicon.

[130]  Jian Long Li,et al.  CFD Study on Polycrystalline Silicon Chemical Vapor Deposition in a Rib Reactor , 2010, 2010 Asia-Pacific Power and Energy Engineering Conference.

[131]  Antonio Luque,et al.  Radiation heat savings in polysilicon production: Validation of results through a CVD laboratory prototype , 2013 .

[132]  M. P. Jain,et al.  Studies on Hydrochlorination of Silicon in a Fixed Bed Reactor , 2010 .

[133]  S. R. Mathur,et al.  Coupled Ordinates Method for Multigrid Acceleration of Radiation Calculations , 1999 .

[134]  徐睿,et al.  Simulation and analysis of Si deposition in turbulent CVD reactors , 2014 .

[135]  D. Snider An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows , 2001 .

[136]  David G. Schaeffer,et al.  Instability in the evolution equations describing incompressible granular flow , 1987 .

[137]  Takamasa Momose,et al.  Thermal rate constants for SiH4⇄SiH3+H and CH4⇄CH3+H by canonical variational transition state theory , 1994 .

[138]  Woo Kyoung Kim,et al.  Effect of Rod Diameters on Flow Pattern and Temperature Profile in Monosilane Siemens Poly-Si Reactor , 2013 .

[139]  Dale M. Snider,et al.  Three fundamental granular flow experiments and CPFD predictions , 2007 .

[140]  Si-Si Liu,et al.  CFD–PBM coupled simulation of silicon CVD growth in a fluidized bed reactor: Effect of silane pyrolysis kinetic models , 2015 .

[141]  O. Levenspiel,et al.  Bubbling Bed Model. Model for Flow of Gas through a Fluidized Bed , 1968 .

[142]  Michael Woodhouse,et al.  Economic Measurements of Polysilicon for the Photovoltaic Industry: Market Competition and Manufacturing Competitiveness , 2015, IEEE Journal of Photovoltaics.

[143]  Juan Gabriel Segovia Hernández,et al.  Silane Production through Reactive Distillation with Intermediate Condensers , 2015 .

[144]  Francine Battaglia,et al.  Simulations of multiphase reactive flows in fluidized beds using in situ adaptive tabulation , 2004 .

[145]  Madhava Syamlal,et al.  MFIX documentation numerical technique , 1998 .

[146]  Manabu Kano,et al.  New Synthesis Procedure To Find the Optimal Distillation Sequence with Internal and External Heat Integrations , 2013 .

[147]  Madhava Syamlal,et al.  Silicon CVD on powders in fluidized bed: Experimental and multifluid Eulerian modelling study , 2007 .

[148]  W. Breiland,et al.  Reactive sticking coefficients for silane and disilane on polycrystalline silicon , 1988 .